
Analyzing the Influence of Resource Prioritization
on HTTP/3 HOL Blocking and Performance

Constantin Sander, Ike Kunze, Klaus Wehrle
Communication and Distributed Systems

RWTH Aachen University, Aachen, Germany
{sander, kunze, wehrle}@comsys.rwth-aachen.de

© IFIP, 2022. This is the author’s version of the work. It is posted here by permission of IFIP for your personal use. Not for redistribution. The definitive
version was published in Network Traffic Measurement and Analysis Conference (TMA), 2022.

Abstract—HTTP/3 comes with a significant change on the
transport layer by switching from TCP to QUIC. Of particu-
lar interest is that QUIC features independent streams which
removes transport HOL blocking during packet loss: loss-
unaffected streams no longer have to wait for full retransmis-
sions of affected streams which was the case for HTTP/2. To
leverage this new capability, multiple streams have to be in
flight at the same time. This can, e.g., be governed by HTTP
resource prioritization which allows a browser to signal its
desired scheduling of streams to improve web performance. For
HTTP/2, sequential scheduling, as used by Chrome, has proven
to achieve good results. This choice, however, prevents QUIC’s
independent streams from taking effect. In contrast, round-robin
scheduling could exploit this specific feature best, but it has
shown detrimental effects for HTTP/2. Yet, in that case, it could
not benefit from independent streams. Whether round-robin is
now beneficial with HTTP/3 is unknown, as the interplay of
resource prioritization and HOL blocking on performance for
HTTP/3 is unexplored. Since the alleviation of HOL blocking
is one of the main features of QUIC, we thus analyze its
impact and influencing factors. We find that for bursty loss,
e.g., from congestion, sequential scheduling achieves good web
performance, but that parallelism can help for increasing random
loss rates. Nevertheless, for moderate loss, parallelism taking
priorities into account is more helpful than agnostic round-robin.

I. INTRODUCTION

HTTP/3 [1] is the new major version of HTTP. It comes with
few feature changes compared to HTTP/2 [2], but introduces a
significant shift on the transport layer: from TCP to QUIC [3].
In particular, QUIC features a new stream notion on the trans-
port layer by which streams are independent from each other
with respect to loss. While streams do also exist in HTTP/2,
they share a single, stream-unaware TCP connection running
underneath. In case of packet loss, this overall connection,
and with it even resource streams unaffected by loss, stall,
and the website load process is unnecessarily interrupted. This
phenomenon is widely known as head-of-line blocking (HOL
blocking). With QUIC, streams unaffected by loss are no
longer hindered by inter-stream HOL blocking and can instead
continue sending.

However, for this new capability to take effect, several
streams and resources must be multiplexed and in-flight in
parallel, which can be governed through HTTP resource
prioritization. In short, it allows browsers to signal how and
in which order website resources should be sent by the servers
with the goal of improving a website’s loading process. For in-

stance, rendering-important files, such as stylesheets or above-
the-fold images, can be prioritized. Today, there exist multiple
HTTP/2 prioritization strategies. The engine of Firefox, e.g.,
relies on a complex dependency tree where resources are sent
in parallel with differing weights. In contrast, Chrome uses a
sequential approach while using round-robin is also possible.
Overall, research has shown that there is no one-size-fits-all
solution on how to best schedule resources for HTTP/2 [4],
[5] and that flexibility is required.

With HTTP/3, resource prioritization uses a new signaling
mechanism: the Extensible Prioritization Scheme (EPS). It is
less expressive and no longer represents elaborate dependen-
cies between resources, e.g., making it impossible to directly
map Firefox’s HTTP/2 strategy to HTTP/3. On the other hand,
while representable using EPS, Chrome’s sequential strategy
stands in contrast to having multiple in-flight resources to
exploit QUIC’s independent streams. Consequently, none of
these established prioritization strategies seem to be capable
of leveraging the full potential of QUIC. Instead, switching to
round-robin may be superior, although it was shown to perform
worst for HTTP/2 [4]. However, while previously subject to
HTTP/2’s HOL blocking, it might now take advantage of
HTTP/3’s parallel QUIC streams to avoid unnecessary waiting
time during retransmissions. Related work has also already
raised this assumption [5], [6], but there has not yet been a
systematic study on the various influencing factors.

In this work, we thus set out to explore the previously
unknown impact of resource prioritization and HOL blocking
on the performance of HTTP/3. Using a controlled testbed
study, we compare HTTP/3’s web performance when subject
to various link characteristics, such as higher latencies and
loss, prioritization strategies, and websites, to argue about
HOL blocking and when it impacts performance. We further
involve HTTP/2 strategies that cannot be signaled via the EPS
and can thus assess whether the simplification of the EPS
slows down HTTP/3. Specifically, our paper contributes the
following:
• We present an exchangeable prioritization testbed for repeat-

able tests of HTTP/3 and HTTP/2 strategies via HTTP/3.
• With our testbed, we find that parallelism helps for random

loss, while this correlation was not found for HTTP/2.
• Yet, for higher bandwidths, lower RTTs, or burst loss, par-

allelism is detrimental, which has to be taken into account.
• We observe that an EPS-adapted strategy cannot compete



Stream Urgency Incremental
A 1 0
B 2 1
C 2 1

BD C
1

0

A
11

256

Stream Urgency Incremental
A 1 0
B 2 1
C 2 1
D 2 1

Stream Urgency Incremental
A 1 0
B 2 1
C 2 1
D 2 0

B C
1

A

D 1

1

0
256

B C
1

0

A
1

256 Add D exclusively

non-exclusively

Fig. 1. HTTP/2 Priority Tree and same scheduling as Extensible Prioritization
Scheme below. A new node D can be added exclusively (right) or non-
exclusively (center) to the priority tree.

with the HTTP/2 original, but the drawbacks are limited.
Structure. Sec. II discusses the evolution of HTTP and HTTP
prioritization, while Sec. III discusses related work concerning
its performance. Sec. IV describes our testbed study to analyze
the prioritization effect for a set of selected websites. Sec. V
describes our results, drilling down into the scenarios and
effects found. Finally, Sec. VI concludes this paper.

II. BACKGROUND: HTTP/2, HTTP/3 AND PRIORITIZATION

HTTP/2 [2] significantly changed HTTP by introducing
stream semantics to multiplex several resource streams over
a single TCP connection. Compared to the previous HTTP
practice of having multiple TCP connections for parallel
transfers, it lowers the overhead on the involved hosts as fewer
connections have to be maintained and reduces latency by
saving handshakes and congestion control slow start [2], [7].
However, building upon TCP, which has no notion of streams,
HTTP/2 suffers from inter-stream HOL blocking in case of
packet loss as TCP stalls the whole connection and thus all
HTTP/2 streams even if only one stream is affected.
QUIC and HTTP/3. This aspect and further issues of HTTP/2
over TCP led Google to develop QUIC [8] (in the following
named gQUIC) as a new special-purpose transport protocol for
HTTP. gQUIC brought major changes, among other things,
independent streams on the transport layer such that inter-
stream HOL blocking was rectified. Today’s standardized
QUIC [3] has evolved from a protocol co-designed for HTTP
into a general-purpose transport protocol seeing increasing use
on the Internet for HTTP [9]. However, the mapping to HTTP
semantics is no longer part of QUIC and is instead developed
individually in the form of HTTP/3 [1]. It inherits most
features of HTTP/2, but some of them required redesigned
implementations as they relied on TCP’s inherent orderedness.
One of these features is resource prioritization.

A. Resource Prioritization

The core idea of resource prioritization is for browsers to
explicitly tell web servers which resources they should send
first to optimize user experience. For example, they could first
focus on above-the-fold resources shown first in the viewport
of the user. The importance of resources heavily depends on

the browser, the webpage, and its resources [10], although
research has generally found loading HTML, Javascript (JS),
and stylesheets (CSS) first to be beneficial [4], [5], [11] as
these critically define the general behavior and layout.
HTTP/2 Prioritization. HTTP/2 [2] defines resource prior-
itization using a weighted priority tree as illustrated on the
top-left side of Fig. 1. Starting with the root stream0, streams
transmit data in downwards order where children wait for their
parents. Siblings send in parallel according to their weight. In
our example, B andC send round-robin afterA.

A browser signals the underlying parent-child relation of
a stream by sending its weight, its parent and an exclusive
flag. With a set exclusive flag (top-right side of Fig. 1), a new
stream D will become the parent of all existing children of
its own parent and will be sent first, while an unset flag will
make it share the bandwidth with the other children (Fig. 1,
center).
HTTP/3 Prioritization. QUIC’s streams no longer guarantee
the required order of the prioritization signals such that the
resulting tree can diverge. Further, it was found that web
servers often did not follow prioritization correctly, possibly
due to the tree’s complexity, rendering it ineffective [12], [13].
Prioritization was thus removed from HTTP/3 [5].

Instead, work focused on designing the Extensible Priori-
tization Scheme (EPS) [14] extension, which is illustrated in
the bottom row of Fig. 1. Every stream is assigned an urgency
and incremental flag, and streams are then sent in increasing
order of urgency. If streams have the same urgency, they are
either sent in order of appearance, if the incremental flag is
not set, or in parallel using round-robin. In contrast to the
HTTP/2 tree, the EPS is order-independent as it avoids direct
relations such that it is less complex but also less expressive.
For example, weighted round-robin cannot be represented as
no weights exist.
Resource Prioritization and HOL blocking. As described
above, QUIC’s support for independent streams has the poten-
tial to ameliorate HTTP/2’s inter-stream HOL blocking, e.g.,
during heavy packet loss. For this, multiple streams have to be
in-flight in parallel, as can be governed by resource prioritiza-
tion. However, not every browser uses a suitable strategy as,
e.g., Chrome requests resources sequentially. Aggravatingly,
related work has found supporting strategies, such as round-
robin, to be detrimental to HTTP/2 web performance [4]. Thus,
we now take a closer look at related work and the impact of
prioritization and QUIC on performance.

III. RELATED WORK:
PERFORMANCE IMPACT OF PRIORITIZATION AND QUIC

The performance impact of QUIC and web resource priori-
tization is a frequent subject of study. One branch of research
deals with alternatives to HTTP prioritization, such as server
push, resource hints, or custom Javascript-based schedulers to
prioritize and decide when to transfer resources via HTTP/2
or SPDY [11], [15]–[20]. These works show that carefully
structuring resource transfers can significantly improve the
webpage loading process but do not discuss specific HTTP/2



prioritization strategies, with respect to sequential or round-
robin loading, and rarely discuss the impact of packet loss.

A. Prioritization over HTTP/2 / TCP

Work on HTTP/2 resource prioritization mostly confirms the
potential for prioritizing web resources. For instance, De Saxcé
et al. [21] and Bergan [22] find that HTTP/2 prioritization
improves the web performance for websites by more than 5%
in terms of SpeedIndex (SI) [23] and Page Load Time (PLT).

Wijnants et al. [4] provide a comprehensive analysis of
the impact of HTTP/2 prioritization strategies on browsers.
They observe that browsers either use i) sequential transfers
(Chrome), ii) (weighted) round-robin (Safari, Internet Ex-
plorer), or iii) combinations of both (Firefox) when transfer-
ring web resources. In a controlled testbed study, similar to
our work, the authors find that a simple round-robin scheme
achieves the worst results, while Firefox’s and Chrome’s
default strategies as well as a FIFO strategy, perform well.
However, this effect becomes less significant for higher packet
loss rates. Given that QUIC was relatively immature at the time
of writing, the authors did not evaluate it.

B. Prioritization over HTTP/3

Marx et al. [5] study prioritization schemes for HTTP/3.
However, due to missing stack and browser support at the
time of writing, they focus on a theoretical, lossless scenario.
They replay the download of a website and compute the
ByteIndex [24], an approximation of the SI, for above-the-fold
resources. Similar to HTTP/2, the authors find that round-robin
is the worst strategy. In contrast, a plain sequential loading,
as well as simple, website-agnostic sequential strategies, can
achieve improvements from 93% up to 130%. However, the
authors do not test the new HTTP/3 EPS and acknowledge
that further work is needed to identify the influence and
interplay of prioritization in real-world loss scenarios. They
particularly stress that round-robin is worst with respect to
web performance for lossless scenarios but potentially best to
exploit QUIC’s independent, HOL blocking-free streams when
subject to loss.

C. QUIC and Packet Loss

Other related works omit prioritization and study QUIC’s
general web performance when subject to loss. Most works
observe that gQUIC tested in testbeds [25]–[28] or involving
the Internet [8], [28]–[30] improves performance with respect
to HTTP/2, especially when subject to high loss. Few works
find worse performance [31], [32] attributed to a flaky gQUIC
stack [33].

Similarly, HTTP/3 is mostly found to improve performance
in testbeds [34] and when using production endpoints [6],
[35], [36]. Trevisan et al. [36], e.g., find an improved SI for
Chrome when using HTTP/3 in the Internet, although the
HTTP/3 performance surprisingly equalizes to HTTP/2’s SI
when subject to packet loss. Analogously, Yu et al. [6] find that
HTTP/3 production endpoints achieve overall improved web

tbftbf netemnetem

veth

BandwidthBandwidth Delay / LossDelay / Loss

H2O Server Browsertime DNS Server
name-
space

</>

Fig. 2. Namespace Testbed Setup: We move every component of our network
emulation in its own network namespace, specifically the server and our
browser, to then connect these namespaces with virtual connections (veth)
and, finally, apply shaping (tbf) or delay/loss (netem).

performance for small websites compared to HTTP/2. How-
ever, the performance improvements of QUIC are seldomly
visible in lossy settings, and endpoints using round-robin did
not improve web performance in those settings either. These
findings raise the question of whether QUIC’s HOL blocking
improvements are indeed effective.

D. Takeaway and Research Gap

Overall, there is substantial work showing the potential of
resource prioritization and highlighting general improvements
of QUIC. However, the impact of resource prioritization to
leverage QUIC’s HOL blocking improvements and the result-
ing impact on web performance have thus far not been studied.
Whether the EPS might interfere is unknown.

We thus recognize a need to shed first light on these
interdependencies and devise a controlled testbed to study
performance differences. In particular, we adapt the scheduling
on server-side and alter link characteristics to evaluate whether
HTTP/3’s prioritization performance differs due to the differ-
ences in HOL blocking, as presented in the next section.

IV. METHODOLOGY

The fundamental approach of our study is similar to
MahiMahi [37]: we i) download the sources of a diverse set
of websites and then ii) replay the websites by rehosting them
locally and accessing these local instances with a browser.
However, we do not directly use MahiMahi due to multiple
reasons. For example, MahiMahi’s webrecord tool showed
problems when downloading websites using HTTP/2. Instead,
we use mitmproxy and Chromium (with disabled QUIC) as
proposed in [11], [25]. A custom framework further allows
us to have more fine-grained control over our testbed and
increases flexibility to, e.g., use netem with burst loss.

In the following, we first describe critical components of our
testbed, including how we replay the websites and model the
different prioritization strategies before we detail the different
parameters that we study.

A. Flexible Testbed Setup

We illustrate our testbed setup in Fig. 2: a browser (cf.
Sec. IV-A2) fetches a website from an adapted H2O-based
web server (cf. Sec. IV-A1), replaying selected websites1.

1Code available at https://github.com/COMSYS/HTTP-3-Prioritization



Both entities are deployed in dedicated network namespaces
and interconnected by several additional network namespaces,
which allow us to model different network settings using
Linux’s tc tool. We connect the namespaces using veth pairs
and deploy token bucket filters (tbfs) with a burst size of one
MTU for bandwidth shaping and netem to apply delay and
loss on the veth devices. To avoid i) interference between the
tbf and netem and ii) backpressure on the sender-side network
stacks [38], we dedicate one namespace for each function. Our
H2O server uses a dedicated IP that is routed to the browser,
and we deploy a DNS server to provide URL translation.

1) Web Server with Adaptable Priorities: Our hosting front-
end server is an adapted H2O web server, which we change to
follow our inputs for the EPS and where we also integrate its
HTTP/2 scheduling scheme implementation into HTTP/3. We
specifically use H2O due to its proven implementation shown
in research with respect to HTTP/2 prioritization/push [4], [11]
and its interoperable quicly QUIC stack [5], [39].

For resource and prioritization retrieval, we identify re-
sources by their URL, following MahiMahi’s URL mapping
approach [37]. Moreover, we also compare the incoming
headers for cache hashes / ETags to replay the corresponding
resource as precisely as possible. Further, we stitch together
chunks, which caused problems for HTTP/2, and remove
headers influencing connections (e.g., ”connection”, ”alt-svc”,
”link”) or expiring resources (e.g., ”expires”, ”date”) similar
to [11].
Gathering Prioritization Strategies. By default, our browser
will only signal its own prioritization strategy, which cannot
be leveraged to model all strategies that we want to test.
We thus have to precompute the desired strategies to allow
a correct prioritization via HTTP/3. For this, we access the
websites in our testbed using Firefox and Chromium via
HTTP/2 and record the priority weights, and dependencies sent
per resource. Moreover, we record the types of Chromium’s
requests to then post-process the signals into classes as defined
in [4] and explained in Sec. IV-B1 to compute an offline
hint for every resource. To ensure stable results, we repeat
this process 30 times for every website and fuse the classes
and weights for every resource by using the corresponding
maximum. We then create the corresponding HTTP/2 trees
and EPS signals in H2O at runtime, guided by the hints.

2) Webbrowser Measurements with Browsertime: Finally,
to measure the actual performance, we fetch websites using a
Browsertime docker container2 with Chromium 95.0.4638.54.
Browsertime screen captures the browser during loading a
webpage and processes the video to calculate different web
metrics, such as the SI. We specifically use the traditional,
image-based SI calculation as the resource timing-based
real user monitoring (RUM) SI is only an approximation
thereof [40]. Note that we host all website resources (also
third-party resources) on the same IP and include all domains
in the corresponding certificate to enforce connection reuse.
We further disable the Fetch credentials flag in Chromium to

2https://github.com/sitespeedio/browsertime

HTML

Urgent Start Leader

Follower

Other Background

SpeculativeJS

Font

CSS XHR

IMG

0

42

241

22
22

1

32 12

22
1

1201 101

Fig. 3. Firefox HTTP/2 Priority Tree (adapted from [4], [42], updated weights)

avoid new connections due to differing connection pools for
cross-origin requests [41] and configure Chromium to only
accept our custom certificates. This way, we enforce a single
connection3 on which prioritization can govern the scheduling
of data without interference from other parallel connections.
Thus, while being admittedly unrealistic, we create an ideal
scenario to study prioritization.

3) Physical Measurement Environment: We run our mea-
surements on physical desktop PCs to represent the page
load process on a typical consumer-grade machine. The PCs
contain an Intel i5-4590 CPU and 16GB of RAM and run
Ubuntu Server 18.04.6 with Linux 5.3.0-24. We parallelize our
measurements on seven equally-built PCs where each machine
only runs one measurement at a time. We further stop and
restart all namespaces, running servers, and the browser and
use a new profile with an empty cache for every measurement.

B. Measured Parameters

To achieve meaningful results, we investigate different pri-
oritization strategies (Sec. IV-B1), websites of different sizes
(Sec. IV-B2), and network scenarios (Sec. IV-B3).

1) Prioritization Strategies: There exist many different
strategies and recommendations [5] for prioritization. In our
study, we focus on the following strategies based on the
findings of Wijnants et al. [4]. In particular, we use Chrome’s
sequential ordering, weighted round-robin as found in Safari,
resource-agnostic round-robin, and Firefox’s dependency tree.
Chrome: Chrome uses a sequential ordering with seven prior-
ity levels. Any lower level may only send if all higher priority
levels have been processed entirely and resources within each
level are transmitted in a FIFO fashion. In HTTP/2, this ap-
proach is represented as a single dependency chain, while for
HTTP/3, the priority levels can be mapped to corresponding
urgencies in the EPS with a disabled incremental flag.
Round-Robin (RR): RR is the inverse of Chrome’s approach
as each stream can alternately send one frame. It easily maps
to HTTP/2’s tree and the EPS as it ignores weights.
Weighted Round-Robin (WRR): Wijnants et al. [4] find
that Safari uses a WRR strategy for prioritizing resources.
All resources are added non-exclusively to the root of the

3Chromium might still open parallel connections first due to race conditions
but closes these redundant connections early on



w
ik

ip
ed

ia
.o

rg
go

og
le

.co
m

go
v.u

k
ph

pb
b.

co
m

fa
ce

bo
ok

.co
m

st
at

co
un

te
r.c

om
ed

.g
ov

gn
u.

or
g

gr
av

at
ar

.co
m

w
3.o

rg
et

sy
.co

m
op

er
a.c

om
sc

ie
nc

ed
ire

ct
.co

m
sp

ot
ify

.co
m

gi
th

ub
.co

m
re

se
ar

ch
ga

te
.n

et
na

tu
re

.co
m

m
sn

.co
m

jo
om

la
.co

m
ap

ac
he

.o
rg

te
le

gr
ap

h.
co

.u
k

do
td

as
h.

co
m

ha
rv

ar
d.

ed
u

de
m

or
ge

n.
be

in
te

l.c
om

ca
nv

as
.b

e
cn

et
.co

m
ac

ad
em

ia
.ed

u
vt

m
.b

e
im

db
.co

m
yo

ut
ub

e.c
om

im
gu

r.c
om

w
or

dp
re

ss
.co

m
ny

tim
es

.co
m

0
4
8

12
16
20

Si
ze

[M
B]

Resources

0
50
100
150
200
250

Fig. 4. Size of Downloaded Resources and Resource Count per Website

dependency tree as with RR, but their weights differ with
respect to to their importance. For example, HTML has a
weight of 255, while CSS and Javascript have the next highest
weight of 24. This approach does not map to the EPS as
it cannot represent individual weights. To still evaluate the
influence of such individual weights with HTTP/3, we patched
H2O’s HTTP/3 implementation to reuse its priority tree code
(c.f. Sec. IV-A1) and use it to govern WRR scheduling.
Firefox: Firefox establishes a complex dependency tree that
does not map to the EPS (cf. Fig. 3). Resources are divided
into four groups which then share the bandwidth unequally.
Within these groups, resources further differ in their weights,
and some get additional subgroups. Importantly, the individual
weights differ slightly depending on Firefox’s internal prior-
itization, so we extract Firefox’s weights from real traces to
represent them in our patched H2O server correctly.
Firefox (EPS): As a final strategy, we adapt Firefox’s de-
pendency tree to fit into the new EPS to assess whether its
simplification has negative implications. We adapt it such that
we maintain the round-robin scheduling per group but map
the groups and subgroups to different urgencies: urgent start
(urgency 1), leader (2), follower (3), other (4), background
(5), and speculative (6). 4

2) Websites: We use 34 of the 40 websites selected by
Wijnants et al. [4] (with prepended www.) as the starting
point for our study. This set includes a wide variety of popular
websites with different numbers of resources and of different
sizes, as shown in Fig. 4. We freshly downloaded the websites
in February 2022 to also get header information which is
missing in the original dataset. However, we do not use all
40 websites of the set. First, we exclude the internal website
of the dataset and bitly.com, because we could not extract
the resource types for the latter site. Second, we exclude
sciencemag.org, columbia.edu, reddit.com, and pinterest.com,
which, for certain scenarios, often exceeded browsertime’s
default timeout of 5-minute recordings per website. Thus, all
of the following results base on the same set of websites.

3) Scenarios: We generally set up H2O and its quicly stack
to use CUBIC as congestion control, which is implemented in
userspace and follows RFC8312 [43] without hystart.

We then configure different network settings as shown in
Tab. I. First, we analyze the influence of bandwidths, followed

4Note, that this approach differs from Firefox’s current implementation
added in November 2021, which maps differently and does not use RR.

Scenario (Section) BW [Mbps] RTT [ms] Added Loss

Bandwidth (§V-A) 1, 2, 5, 10 100 0%

Random Loss (§V-B) 2 100 {0, 1, 2, 5}%, random
RTT (§V-C) 2 10, 50, 100 2%

Burst Loss (§V-D) 2 100 2%, burst: {5, 10, 15}

TABLE I
PARAMETERS VARIED DURING OUR MEASUREMENTS

by the influence of random loss, and, third, the influence of
RTTs. While these values are synthetic to argue on the direct
impact of specific changes on HOL blocking per parameter, we
tried to orient on challenged mobile networks. Moreover, we
also distinguish between random loss and burst loss, creating
the latter using the simple Gilbert-Eliott model [44]. Moreover,
we prepare the tbf queues to always fit 1BDP of data.

4) Metrics: Our evaluation uses two metrics discussed
throughout this paper: web performance and HOL blocking.
We use the SI [23] to argue about web performance, opposed
to the PLT, as it is known to closely correlate with the
user-perceived performance [11], [24], [33], [45]. A lower SI
represents a faster page load and vice versa.

To assess HOL blocking, we measure the amount of intra-
stream HOL blocked bytes (we name it HOL) on the browser-
side, similarly as demonstrated by [5]. A larger HOL means
that more bytes were stalled, so in theory, less data could be
processed in parallel. Please note, however, that HOL also
depends on the number of in-flight bytes / the congestion
window (cwnd). As the in-flight bytes represent the number of
unacknowledged bytes which are currently sent, they describe
the maximum HOL which can occur when all unacknowledged
bytes are blocked. Moreover, the cwnd limits the maximum
of in-flight bytes and grows over time / shrinks with loss
depending on the scenario. I.e., the cwnd and thus the scenario
also influence the HOL. Thus, the HOL could be normalized
by all bytes sent whenever streams are HOL blocked. However,
missing frames might not be retransmitted directly (e.g., due to
prioritization as for H2O/quicly [5]), which can then also skew
the results arbitrarily. Thus, we do not normalize it but assume
similar cwnds and in-flight bytes for equal link scenarios
(resulting in equal loss) when comparing the impact of the
strategies. To measure the HOL, we process the Netlog of
Chromium to extract its QUIC session information. Whenever
a stream frame is received, we check whether its offset and
length are in order or whether out-of-order frames for a stream
are received. In the latter case, we save how many unseen
bytes cannot be forwarded due to intra-stream HOL blocking
up until the missing frames are received. We then sum up the
HOL for all streams.

V. RESULTS

In the following, we present our results for the different
scenarios. We perform 30 measurements in each setting, for
which we then compute our described metrics. To focus on the
differences between the sequential scheduling for Chrome and
our tested strategies, we use the relative difference (denoted as



faster slower
−0.5 0.0 0.5
∆SpeedIndex

0.00

0.25

0.50

0.75

1.00

CD
F

1 Mbps

faster slower
−0.5 0.0 0.5
∆SpeedIndex

2 Mbps

faster slower
−0.5 0.0 0.5
∆SpeedIndex

5 Mbps

faster slower
−0.5 0.0 0.5
∆SpeedIndex

10 Mbps

reduced increased

−0.5 0.0 0.5
∆HOL

0.00

0.25

0.50

0.75

1.00

CD
F

reduced increased

−0.5 0.0 0.5
∆HOL

reduced increased

−0.5 0.0 0.5
∆HOL

reduced increased

−0.5 0.0 0.5
∆HOL

Chrome Firefox (EPS) Firefox RR WRR

Fig. 5. Impact of Bandwidth on SI and HOL for 100ms RTT and 0% Loss

∆) of their medians. A higher ∆ corresponds to an increase
with respect to Chrome, e.g., a larger SI, and vice versa. To
avoid divisions by zero, we add an ε = 1−10. We further check
for statistical significance by adopting [4]’s measurements and
present the corresponding results of a Mann-Whitney U test
(as our data is not strongly normally distributed) for p < 0.005
counted as significant. We mark this significance in our CDF
Plots by reducing the line width for insignificant data points.

A. Influence of Bandwidth

We first focus on the influence of bandwidth without artifi-
cial loss at 100ms RTT on the prioritization strategies. Fig. 5
shows the relative difference of the SI for the different strate-
gies in comparison to Chrome’s sequential strategy (∆SI) and
the relative difference in head-of-line blocked bytes (∆HOL).
We further also tested 50Mbps (not shown for space reasons).
HOL blocking. We can see that the reduction of HOL blocked
bytes vanishes with growing bandwidth and that sequential
scheduling can even cause less HOL blocking in many cases
as the curve moves to the right, contradicting our initial
assumptions. We attribute this effect to larger bandwidths
causing larger cwnds and, thus, more in-flight bytes. As the
resources transmitted are limited in size, this constellation
increases the probability of multiple resources being in-flight
– also with sequential sending. The amount of HOL blocked
bytes then splits between the resources. Further, as we do
not shape any artificial loss, any packet loss occurring in this
setting is caused by filled-up queues and, hence, bursty. For
example, for a bandwidth of 10Mbps, we could see burst
loss involving up to 20 packets in several Chromium Netlogs
and qvis [46]. Such a burst can affect up to 20 RR streams,
while for sequential scheduling, only few streams are affected
depending on the stream size, which is highly dependent on
the website’s resource sizes. Thus, depending on the cwnd
and stream size, other streams might already follow after that,
which can significantly reduce the amount of HOL blocked
bytes. We analyze the specific effects of burst loss in more
detail in V-D. Further, with higher bandwidths, the link is

faster slower
−0.5 0.0 0.5
∆SpeedIndex

0.00

0.25

0.50

0.75

1.00

CD
F

0% Loss

faster slower
−0.5 0.0 0.5
∆SpeedIndex

1% Loss

faster slower
−0.5 0.0 0.5
∆SpeedIndex

2% Loss

faster slower
−0.5 0.0 0.5
∆SpeedIndex

5% Loss

reduced increased

−0.5 0.0 0.5
∆HOL

0.00

0.25

0.50

0.75

1.00

CD
F

reduced increased

−0.5 0.0 0.5
∆HOL

reduced increased

−0.5 0.0 0.5
∆HOL

reduced increased

−0.5 0.0 0.5
∆HOL

Chrome Firefox (EPS) Firefox RR WRR

Fig. 6. Impact of Loss on SI and HOL for 2MbpsBandwidth and 100msRTT

often not fully saturated (especially for smaller websites) such
that no loss / HOL blocking occurred (that is the case for the
vertical line from 45% to 75% for ∆HOL at 10Mbps and for
more than 80% of runs at 50Mbps).
SpeedIndex. The impact of the different strategies on the
SI gets smaller and narrower with growing bandwidth. Apart
from reduced HOL blocking, we attribute this to increasing
bandwidths shifting bottlenecks from transferring to process-
ing resources. Going from right to left, the parallelized strate-
gies first introduce detriments at 5Mbps. E.g., for Firefox, 6
websites achieve an SI improvement of more than 5%, while
9 websites achieve an SI detriment of more than 5%.

For 2Mbps, these numbers even out for Firefox and Firefox
(EPS), while RR and WRR still suffer. More than one-third of
all websites experience a detriment of more than 5%, while
less than one-fifth achieve an improvement in the same order.

For 1Mbps, WRR and RR catch up, and Firefox and
Firefox (EPS) even achieve more significant improvements
than detriments by more than 5%. Given that HOL blocking
is reduced for all strategies, its impact is not clearly seen for
all SIs.
Takeaway. Higher bandwidths reduce the effect of resource
prioritization strategies with respect to HOL blocking and SI.
Counter-intuitively, sequential scheduling can even be benefi-
cial for reducing HOL blocking at higher bandwidths. Lower
bandwidths increase the variance of the strategies, i.e., while
with high bandwidths the SI changes only marginally, it now
improves for certain websites but also decreases significantly.
A clear result on which prioritization is in general better for
all websites cannot be given, highlighting the need for website-
specific approaches at low-bandwidths. A strong influence of
HOL blocking on SI cannot be seen in this scenario.

B. Influence of Random Loss

We next analyze the influence of random loss at a rate of
2Mbps as we could see the largest differences between the
strategies at this rate. Fig. 6 shows the results for loss rates of
0% (for comparison), 1%, 2% and 5%. When looking into



Firefox (EPS)
Firefox

RR
WRR

Correlation ∆SpeedIndex and ∆HOL

−1
0
1

Firefox (EPS)
Firefox

RR
WRR

Correlation Loss and ∆SpeedIndex

−1
0
1

w
ik

ip
ed

ia
.o

rg
go

og
le

.co
m

go
v.u

k
ph

pb
b.

co
m

fa
ce

bo
ok

.co
m

st
at

co
un

te
r.c

om
ed

.g
ov

gn
u.

or
g

gr
av

at
ar

.co
m

w
3.o

rg
et

sy
.co

m
op

er
a.c

om
sc

ie
nc

ed
ire

ct
.co

m
sp

ot
ify

.co
m

gi
th

ub
.co

m
re

se
ar

ch
ga

te
.n

et
na

tu
re

.co
m

m
sn

.co
m

jo
om

la
.co

m
ap

ac
he

.o
rg

te
le

gr
ap

h.
co

.u
k

do
td

as
h.

co
m

ha
rv

ar
d.

ed
u

de
m

or
ge

n.
be

in
te

l.c
om

ca
nv

as
.b

e
cn

et
.co

m
ac

ad
em

ia
.ed

u
vt

m
.b

e
im

db
.co

m
yo

ut
ub

e.c
om

im
gu

r.c
om

w
or

dp
re

ss
.co

m
ny

tim
es

.co
m

Firefox (EPS)
Firefox

RR
WRR

Correlation Loss and ∆HOL

−1
0
1

Fig. 7. Spearman’s Correlation Coefficient per Website

our prior measurements, we could see similar congestion/burst
loss rates from 2% up to 7% in the median. We also repeated
this measurement for Reno as congestion control (not shown)
and saw the same trend but weaker.
HOL blocking. When increasing the loss rates, we can see
that the parallel strategies noticeably reduce the amount of
HOL blocked bytes compared to Chrome which we and related
work [5] assumed. We deduce this to i) smaller cwnds which,
in turn, potentially reduce the number of in-flight streams
with sequential scheduling, and ii) single packet random loss
affecting sequential scheduling stronger than parallel schedul-
ing. Yet, Firefox (EPS) reduces HOL blocking less than the
other strategies. We attribute this difference to our adaptation,
which reduces the number of parallel in-flight streams and,
thus, potential HOL blocking improvements.
SpeedIndex. The results with respect to the SI are less
pronounced. We can see slight improvements in the median
for higher loss rates. Firefox achieves the most remarkable
improvements, especially at 2% loss and more. It improves
the performance by more than 5% for 6 more websites than
it decreases performance by 5%. At 5% loss and for 25%
performance change, this difference is 2 websites. Firefox
(EPS) instead shows fewer improvements in SI. From 2%
loss on, it achieves its most improvements by 5% for 2 more
websites than it decreases performance. WRR and RR, as
before, cannot compete until 5% loss. Generally speaking, we
can see that the distribution of benefits and detriments turns
at 2% loss, where the results in total are most balanced.
Correlation. When inspecting individual results, we noticed
that larger websites saw a larger influence of loss on HOL
blocking and larger improvements for SI. For smaller web-
sites (especially <0.6MB), we saw less reduction for HOL
blocking and mainly SI detriments. Hence, we cannot find a
general correlation and show Spearman’s correlation coeffi-
cient between ∆HOL, ∆SI, and packet loss per website in
Fig. 7. The x-axis is sorted with respect to the total size of
resources (cf. Fig 4).

faster slower
−0.5 0.0 0.5

∆SpeedIndex

0.00

0.25

0.50

0.75

1.00

CD
F

10ms

faster slower
−0.5 0.0 0.5

∆SpeedIndex

50ms

faster slower
−0.5 0.0 0.5

∆SpeedIndex

100ms

reduced increased

−0.5 0.0 0.5
∆HOL

0.00

0.25

0.50

0.75

1.00

CD
F

reduced increased

−0.5 0.0 0.5
∆HOL

reduced increased

−0.5 0.0 0.5
∆HOL

Chrome Firefox (EPS) Firefox RR WRR

Fig. 8. Impact of RTT on SI and HOL for 2MbpsBandwidth and 2% Loss

Inspecting the correlation between ∆SI and ∆HOL, we can
see that it is more often positive for larger websites (right).
In comparison, it gets weaker or negative for smaller websites
(left). The correlation between ∆SI and loss is more negative
for the larger websites, i.e., more loss results in an improved
SI compared to Chrome’s sequential scheduling. We find the
inverse, i.e., a more positive correlation, for smaller websites,
i.e., most smaller websites suffer from the parallel scheduling.
For loss and ∆HOL, we see strong negative correlations, as
could be noticed before, except for spotify.com.
Takeaway. For random loss, parallel strategies, in general,
reduce HOL blocking. However, this reduction does not di-
rectly improve the SI, e.g., RR requires high loss to take
effect. Also, mainly larger websites see benefits, while smaller
websites can even see detriments. Yet, both sides see outliers.
As such, packet loss impacts the choice of prioritization, but
priorities and website structure are still part of the equation.

C. Influence of RTT

In this section, we analyze the impact of different RTTs
as they have manifold potential influences on performance,
e.g., via i) the delay of retransmissions or ii) their impact on
the amount of in-flight bytes and in-flight stream frames. We
expect that a lower RTT reduces the performance impact of
HOL blocking as it reduces wait time. Moreover, the cwnd
should be smaller, such that fewer streams are active with
sequential scheduling and differences in HOL could grow.

Fig. 8 shows the SI for 10ms, 50ms, and 100ms as RTT
when subject to 2% random loss and 2Mbps as bandwidth
bottleneck. We select 2% loss, as we could see the most
balanced outcome (cf. Section V-B) such that we can see
potential changes quickly. We can see that the lower RTTs
move our curve downwards, such that more statistically sig-
nificant detriments and fewer improvements occur. Around
50% of websites experience a deteriorating performance for
RR at 10ms. HOL blocking-wise, we can see that it is more
reduced with parallel strategies for lower RTTs fulfilling our
expectations regarding reduced in-flight bytes.



faster slower
−0.5 0.0 0.5
∆SpeedIndex

0.00

0.25

0.50

0.75

1.00

CD
F

Random

faster slower
−0.5 0.0 0.5
∆SpeedIndex

Burst 5

faster slower
−0.5 0.0 0.5
∆SpeedIndex

Burst 10

faster slower
−0.5 0.0 0.5
∆SpeedIndex

Burst 15

reduced increased

−0.5 0.0 0.5
∆HOL

0.00

0.25

0.50

0.75

1.00

CD
F

reduced increased

−0.5 0.0 0.5
∆HOL

reduced increased

−0.5 0.0 0.5
∆HOL

reduced increased

−0.5 0.0 0.5
∆HOL

Chrome Firefox (EPS) Firefox RR WRR

Fig. 9. Impact of Burst Loss on SI and HOL for 2MbpsBandwidth and
100msRTT for Random Loss and Burst Sizes from 5 to 15 Packets

Takeaway. Lower RTTs increase the effect of parallel strate-
gies on HOL blocking. However, the effect of HOL blocking on
performance vanishes such that the parallel strategies again
show a detrimental impact.

D. Influence of Burst Loss

Until now, we only systematically analyzed the effect of
random loss, although we already saw that burst loss changes
the behavior in Sec. V-A. Thus, we now measure the influence
of burst loss when applying it in a controlled manner.

Fig. 9 shows ∆SI and ∆HOL for an average loss rate of
2%, but for random loss and burst loss of average length 5,
10, and 15 modeled via the simple Gilbert-Eliott Model [44].
Using this model, very long bursts of loss can occur such
that many of our measurements failed as Chromium wrongly
detected a network blackhole, and we had to repeat these runs.

We can see that increased bursts of loss while maintaining
a steady rate of 2% artificial loss have a detrimental effect on
performance. Also HOL blocking is reduced less strongly. The
HOL blocking curve moves right, while the SI curve flattens
for improvements. SI detriments stay similar with a widening
gap between the Firefox strategies and WRR/RR, where
WRR/RR achieves worse performance. We attribute this effect
to RR affecting several streams during burst loss, while Firefox
distributes stream weight much more diversely, decreasing the
probability of loss touching all streams. However, we expected
that WRR benefits similarly and that Firefox (EPS) is affected
instead, but WRR is less diversely distributed than Firefox.
Firefox (EPS) is indeed affected with respect to HOL blocking,
which, however, seems to impact performance barely.

A possible alternative might be batched round-robin, which
does not alternate after every, but batches of n packets, as
suggested by [47] and found for Google’s QUIC endpoints [5],
[6]. Burst loss thus affects and blocks fewer streams. However,
to fully leverage this, an adaption to cwnd and burst size may
be required to avoid sequential sending or endangering HOL
blocking on many streams, which cannot be signaled today.

Takeaway. Burst loss is detrimental for per-packet round-
robin with respect to HOL blocking and performance, i.e.,
HOL blocking is reduced less strongly and SI increases
outweigh decreases. A more diverse distribution of weights
helps, while batched round-robin could also be an alternative.

VI. CONCLUSION

HTTP/3 transfers can only benefit from QUIC’s HOL block-
ing free streams during loss if multiple streams are scheduled
to be in-flight. HTTP prioritization can govern this scheduling
but also impacts web performance when resources are received
too late. The newly arising interdependencies between HOL
blocking, loss, and performance were unclear.

Hence, we performed systematic measurements to assess
the effect of prioritization on HOL blocking and its effect on
web performance. We find that parallel strategies are helpful
with respect to HOL blocking for high random loss and
low BDP scenarios, such that enough streams are active to
bridge intra-stream HOL blocking. However, for burst loss,
per-packet round-robin strategies suffered contrariwise as now
multiple streams were affected, and HOL blocking was not
reduced. Further, reduced HOL blocking does not automat-
ically mean better web performance. E.g., smaller RTTs at
constant bandwidths mean lower BDPs and cwnds emphasiz-
ing sequential issues with respect to loss, but relieve the delay
penalty of retransmissions. Yet, a positive effect of reduced
HOL blocking on web performance could be seen for higher
RTTs and lower bandwidth. However, mostly larger websites
benefited, potentially as they have more resources in-flight
which could be multiplexed to reduce HOL blocking, while
smaller websites often saw detriments. Still, not all larger
websites benefited and not all smaller websites suffered. This
highlights that a website’s structure still also influences web
performance and the choice of prioritization. Specifically, we
also saw that the mixture of resource priorities and parallelism
helps better for moderate loss than pure round-robin, even
when using a simplified scheme such as the EPS.

Based on our first insights, we identify several further sce-
narios that future work can extend on. For instance, we limited
our measurements to a single IP to enforce a single connection
omitting the influence of third-party resources. Further, we did
not visit the influence of non-loss-based congestion control.
However, we already saw cases where parallelism deterio-
rated or improved web performance either depending on a
website’s structure or the network, which means that HTTP/3
prioritization and even the actual multiplexing has to adapt
to both factors. For instance, a mobile network introducing
random loss and high RTTs benefits more from per packet
round-robin than a burst loss afflicted last mile, which might
require that round-robin switches streams after multiples of
the burst size to create batches. An AQM deployed on the
path could interfere again with the batch size which can also
not be signaled today. As such, we believe that a simple one-
size-fits-all strategy is improbable but that specifically tailored
strategies which not only change per website but also per
network are required to get the most out of HTTP/3.



ACKNOWLEDGMENTS

This work has been funded by the German Research Foun-
dation DFG under Grant No. WE 2935/20-1 (LEGATO). We
thank the anonymous reviewers and our shepherd Anna Brun-
ström for their valuable comments. Furthermore, we would
like to thank Konrad Wolsing for providing the sources of [25].

REFERENCES

[1] M. Bishop, “Hypertext Transfer Protocol Version 3 (HTTP/3),”
IETF, Internet-Draft, 2021. https://datatracker.ietf.org/doc/html/
draft-ietf-quic-http-34/

[2] M. Belshe, R. Peon, and M. Thomson, “Hypertext Transfer
Protocol Version 2 (HTTP/2),” IETF, RFC 7540, 2015. https:
//datatracker.ietf.org/doc/html/rfc7540

[3] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed and
Secure Transport,” IETF, RFC 9000, 2021. https://datatracker.ietf.org/
doc/html/rfc9000

[4] M. Wijnants, R. Marx, P. Quax, and W. Lamotte, “HTTP/2
Prioritization and Its Impact on Web Performance,” in Proceedings
of the World Wide Web Conference (WWW ’18), 2018. https:
//doi.org/10.1145/3178876.3186181

[5] R. Marx, T. De Decker, P. Quax, and W. Lamotte, “Resource
Multiplexing and Prioritization in HTTP/2 over TCP Versus HTTP/3
over QUIC,” in Web Information Systems and Technologies (WEBIST
’19), 2020. https://doi.org/10.1007/978-3-030-61750-9 5

[6] A. Yu and T. A. Benson, “Dissecting Performance of Production
QUIC,” in Proceedings of the Web Conference 2021 (WWW ’21), 2021.
https://doi.org/10.1145/3442381.3450103

[7] I. Grigorik, High Performance Browser Networking: What Every Web
Developer Should Know about Networking and Web Performance.
O’Reilly Media, Inc., 2013.

[8] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, F. Kouranov, I. Swett, J. Iyengar, J. Bailey, J. Dorfman,
J. Roskind, J. Kulik, P. Westin, R. Tenneti, R. Shade, R. Hamilton,
V. Vasiliev, W.-T. Chang, and Z. Shi, “The QUIC Transport
Protocol: Design and Internet-Scale Deployment,” in Proceedings of the
Conference of the ACM Special Interest Group on Data Communication
(SIGCOMM ’17), 2017. https://doi.org/10.1145/3098822.3098842

[9] J. Zirngibl, P. Buschmann, P. Sattler, B. Jaeger, J. Aulbach, and
G. Carle, “It’s Over 9000: Analyzing Early QUIC Deployments
with the Standardization on the Horizon,” in Proceedings of
the ACM Internet Measurement Conference (IMC ’21), 2021.
https://doi.org/10.1145/3487552.3487826

[10] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall,
“Demystifying Page Load Performance with WProf,” in Proceedings
of the USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’13), 2013. https://www.usenix.org/conference/
nsdi13/technical-sessions/presentation/wang xiao

[11] T. Zimmermann, B. Wolters, O. Hohlfeld, and K. Wehrle, “Is the Web
Ready for HTTP/2 Server Push?” in Proceedings of the International
Conference on Emerging Networking EXperiments and Technologies
(CoNEXT ’18), 2018. https://doi.org/10.1145/3281411.3281434

[12] A. Davies, “Tracking HTTP/2 Prioritization Issues,” 2022. https:
//github.com/andydavies/http2-prioritization-issues

[13] M. Jiang, X. Luo, T. Miu, S. Hu, and W. Rao, “Are HTTP/2
Servers Ready Yet?” in IEEE International Conference on Distributed
Computing Systems (ICDCS ’17), 2017. https://doi.org/10.1109/ICDCS.
2017.279

[14] K. Oku and L. Pardue, “Extensible Prioritization Scheme for
HTTP,” IETF, Internet-Draft, 2022. https://datatracker.ietf.org/doc/html/
draft-ietf-httpbis-priority-12/

[15] V. Ruamviboonsuk, R. Netravali, M. Uluyol, and H. V. Madhyastha,
“Vroom: Accelerating the Mobile Web with Server-Aided Dependency
Resolution,” in Proceedings of the Conference of the ACM Special
Interest Group on Data Communication (SIGCOMM ’17), 2017.
https://doi.org/10.1145/3098822.3098851

[16] C. Kelton, J. Ryoo, A. Balasubramanian, and S. R. Das, “Improving
User Perceived Page Load Times Using Gaze,” in Proceedings
of the USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’17), 2017. https://www.usenix.org/conference/
nsdi17/technical-sessions/presentation/kelton

[17] R. Netravali, A. Goyal, J. Mickens, and H. Balakrishnan, “Polaris:
Faster Page Loads Using Fine-grained Dependency Tracking,” in
Proceedings of the USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’16), 2016. https://www.usenix.org/
conference/nsdi16/technical-sessions/presentation/netravali

[18] S. Rosen, B. Han, S. Hao, Z. M. Mao, and F. Qian, “Push or Request:
An Investigation of HTTP/2 Server Push for Improving Mobile
Performance,” in Proceedings of the International Conference on World
Wide Web (WWW ’17), 2017. https://doi.org/10.1145/3038912.3052574

[19] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall,
“How Speedy Is SPDY?” in Proceedings of the USENIX Symposium
on Networked Systems Design and Implementation (NSDI ’14), 2014.
https://www.usenix.org/conference/nsdi14/technical-sessions/wang

[20] M. Butkiewicz, D. Wang, Z. Wu, H. V. Madhyastha, and
V. Sekar, “Klotski: Reprioritizing Web Content to Improve
User Experience on Mobile Devices,” in Proceedings of
the USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’15), 2015. https://www.usenix.org/conference/
nsdi15/technical-sessions/presentation/butkiewicz

[21] H. de Saxcé, I. Oprescu, and Y. Chen, “Is HTTP/2 Really Faster
Than HTTP/1.1?” in IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS ’15), 2015. https://doi.org/10.1109/
INFCOMW.2015.7179400

[22] T. Bergan, “Benchmarking HTTP/2 Priorities,”
2016. https://docs.google.com/document/d/1oLhNg1skaWD4
DtaoCxdSRN5erEXrH-KnLrMwEpOtFY/edit

[23] P. Meenan, “How Fast Is Your Website?” Communications of the ACM,
vol. 56, no. 4, 2013. https://doi.org/10.1145/2436256.2436270

[24] E. Bocchi, L. De Cicco, and D. Rossi, “Measuring the Quality of
Experience of Web Users,” ACM SIGCOMM Computer Communication
Review, vol. 46, no. 4, 2016. https://doi.org/10.1145/3027947.3027949

[25] K. Wolsing, J. Rüth, K. Wehrle, and O. Hohlfeld, “A Performance
Perspective on Web Optimized Protocol Stacks: TCP+TLS+HTTP/2 vs.
QUIC,” in Proceedings of the Applied Networking Research Workshop
(ANRW ’19), 2019. https://doi.org/10.1145/3340301.3341123

[26] P. Biswal and O. Gnawali, “Does QUIC Make the Web Faster?” in
IEEE Global Communications Conference (GLOBECOM ’16), 2016.
https://doi.org/10.1109/GLOCOM.2016.7841749

[27] G. Carlucci, L. De Cicco, and S. Mascolo, “HTTP over UDP:
An Experimental Investigation of QUIC,” in Proceedings of the
ACM Symposium on Applied Computing (SAC ’15), 2015. https:
//doi.org/10.1145/2695664.2695706

[28] S. Cook, B. Mathieu, P. Truong, and I. Hamchaoui, “QUIC: Better
For What And For Whom?” in IEEE International Conference on
Communications (ICC ’17), 2017. https://doi.org/10.1109/ICC.2017.
7997281

[29] A. M. Kakhki, S. Jero, D. Choffnes, C. Nita-Rotaru, and A. Mislove,
“Taking a Long Look at QUIC An Approach for Rigorous
Evaluation of Rapidly Evolving Transport Protocols,” in Proceedings
of the ACM Internet Measurement Conference (IMC ’17), 2017.
https://doi.org/10.1145/3131365.3131368

[30] P. Megyesi, Z. Krämer, and S. Molnár, “How Quick Is QUIC?” in
IEEE International Conference on Communications (ICC ’16), 2016.
https://doi.org/10.1109/ICC.2016.7510788

[31] D. Bhat, A. Rizk, and M. Zink, “Not so QUIC: A Performance Study
of DASH over QUIC,” in Proceedings of the Workshop on Network and
Operating Systems Support for Digital Audio and Video (NOSSDAV
’17), 2017. https://doi.org/10.1145/3083165.3083175

[32] K. Nepomuceno, I. N. de Oliveira, R. R. Aschoff, D. Bezerra, M. S. Ito,
W. Melo, D. Sadok, and G. Szabó, “QUIC and TCP: A Performance
Evaluation,” in IEEE Symposium on Computers and Communications
(ISCC ’18), 2018. https://doi.org/10.1109/ISCC.2018.8538687

[33] J. Rüth, K. Wolsing, K. Wehrle, and O. Hohlfeld, “Perceiving QUIC:
Do Users Notice or Even Care?” in Proceedings of the International
Conference on Emerging Networking Experiments And Technologies
(CoNEXT ’19), 2019. https://doi.org/10.1145/3359989.3365416

[34] D. Saif, C.-H. Lung, and A. Matrawy, “An Early Benchmark of Quality
of Experience Between HTTP/2 and HTTP/3 Using Lighthouse,” in
IEEE International Conference on Communications (ICC ’21), 2021.
https://doi.org/10.1109/ICC42927.2021.9500258

[35] T. Shreedhar, R. Panda, S. Podanev, and V. Bajpai, “Evaluating QUIC
Performance over Web, Cloud Storage and Video Workloads,” IEEE
Transactions on Network and Service Management (TNSM ’21), 2021.
https://doi.org/10.1109/TNSM.2021.3134562

https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-34/
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-34/
https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc9000
https://datatracker.ietf.org/doc/html/rfc9000
https://doi.org/10.1145/3178876.3186181
https://doi.org/10.1145/3178876.3186181
https://doi.org/10.1007/978-3-030-61750-9_5
https://doi.org/10.1145/3442381.3450103
https://doi.org/10.1145/3098822.3098842
https://doi.org/10.1145/3487552.3487826
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/wang_xiao
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/wang_xiao
https://doi.org/10.1145/3281411.3281434
https://github.com/andydavies/http2-prioritization-issues
https://github.com/andydavies/http2-prioritization-issues
https://doi.org/10.1109/ICDCS.2017.279
https://doi.org/10.1109/ICDCS.2017.279
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-priority-12/
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-priority-12/
https://doi.org/10.1145/3098822.3098851
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/kelton
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/kelton
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/netravali
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/netravali
https://doi.org/10.1145/3038912.3052574
https://www.usenix.org/conference/nsdi14/technical-sessions/wang
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/butkiewicz
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/butkiewicz
https://doi.org/10.1109/INFCOMW.2015.7179400
https://doi.org/10.1109/INFCOMW.2015.7179400
https://docs.google.com/document/d/1oLhNg1skaWD4_DtaoCxdSRN5erEXrH-KnLrMwEpOtFY/edit
https://docs.google.com/document/d/1oLhNg1skaWD4_DtaoCxdSRN5erEXrH-KnLrMwEpOtFY/edit
https://doi.org/10.1145/2436256.2436270
https://doi.org/10.1145/3027947.3027949
https://doi.org/10.1145/3340301.3341123
https://doi.org/10.1109/GLOCOM.2016.7841749
https://doi.org/10.1145/2695664.2695706
https://doi.org/10.1145/2695664.2695706
https://doi.org/10.1109/ICC.2017.7997281
https://doi.org/10.1109/ICC.2017.7997281
https://doi.org/10.1145/3131365.3131368
https://doi.org/10.1109/ICC.2016.7510788
https://doi.org/10.1145/3083165.3083175
https://doi.org/10.1109/ISCC.2018.8538687
https://doi.org/10.1145/3359989.3365416
https://doi.org/10.1109/ICC42927.2021.9500258
https://doi.org/10.1109/TNSM.2021.3134562


[36] M. Trevisan, D. Giordano, I. Drago, and A. S. Khatouni, “Measuring
HTTP/3: Adoption and Performance,” in Mediterranean Communication
and Computer Networking Conference (MedComNet ’21), 2021.
https://doi.org/10.1109/MedComNet52149.2021.9501274

[37] R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Winstein, J. Mickens,
and H. Balakrishnan, “Mahimahi: Accurate Record-and-Replay for
HTTP,” in Proceedings of the USENIX Annual Technical Conference
(USENIX ATC ’15), 2015. https://www.usenix.org/conference/atc15/
technical-session/presentation/netravali

[38] J. Rüth, I. Kunze, and O. Hohlfeld, “An Empirical View on
Content Provider Fairness,” in Network Traffic Measurement and
Analysis Conference (TMA ’19), 2019. https://doi.org/10.23919/TMA.
2019.8784684

[39] R. Marx, J. Herbots, W. Lamotte, and P. Quax, “Same Standards,
Different Decisions: A Study of QUIC and HTTP/3 Implementation
Diversity,” in Proceedings of the Workshop on the Evolution,
Performance, and Interoperability of QUIC (EPIQ ’20), 2020.
https://doi.org/10.1145/3405796.3405828

[40] “RUM-SpeedIndex.” https://github.com/WPO-Foundation/
RUM-SpeedIndex

[41] C. Sander, L. Blöcher, K. Wehrle, and J. Rüth, “Sharding and
HTTP/2 Connection Reuse Revisited: Why Are There Still Redundant
Connections?” in Proceedings of the ACM Internet Measurement

Conference (IMC ’21), 2021. https://doi.org/10.1145/3487552.3487832
[42] R. Marx, T. De Decker, P. Quax, and W. Lamotte, “Of the

Utmost Importance: Resource Prioritization in HTTP/3 over QUIC,”
in Web Information Systems and Technologies (WEBIST ’19), 2019.
https://doi.org/10.5220/0008191701300143

[43] I. Rhee, L. Xu, S. Ha, A. Zimmermann, L. Eggert, and R. Scheffenegger,
“CUBIC for Fast Long-Distance Networks,” IETF, RFC 8312, 2018.
https://datatracker.ietf.org/doc/html/rfc8312

[44] G. Hasslinger and O. Hohlfeld, “The Gilbert-Elliott Model for Packet
Loss in Real Time Services on the Internet,” in GI/ITG Conference -
Measurement, Modelling and Evalutation of Computer and Communi-
cation Systems, 2008.

[45] T. Hoßfeld, F. Metzger, and D. Rossi, “Speed Index: Relating the
Industrial Standard for User Perceived Web Performance to Web QoE,”
in International Conference on Quality of Multimedia Experience
(QoMEX ’18), 2018. https://doi.org/10.1109/QoMEX.2018.8463430

[46] R. Marx, M. Piraux, P. Quax, and W. Lamotte, “Debugging
QUIC and HTTP/3 with Qlog and Qvis,” in Proceedings of
the Applied Networking Research Workshop (ANRW ’20), 2020.
https://doi.org/10.1145/3404868.3406663

[47] R. Marx, “Head-of-Line Blocking in QUIC and HTTP/3: The Details,”
2020. https://github.com/rmarx/holblocking-blogpost

https://doi.org/10.1109/MedComNet52149.2021.9501274
https://www.usenix.org/conference/atc15/technical-session/presentation/netravali
https://www.usenix.org/conference/atc15/technical-session/presentation/netravali
https://doi.org/10.23919/TMA.2019.8784684
https://doi.org/10.23919/TMA.2019.8784684
https://doi.org/10.1145/3405796.3405828
https://github.com/WPO-Foundation/RUM-SpeedIndex
https://github.com/WPO-Foundation/RUM-SpeedIndex
https://doi.org/10.1145/3487552.3487832
https://doi.org/10.5220/0008191701300143
https://datatracker.ietf.org/doc/html/rfc8312
https://doi.org/10.1109/QoMEX.2018.8463430
https://doi.org/10.1145/3404868.3406663
https://github.com/rmarx/holblocking-blogpost

	Introduction
	Background:HTTP/2,HTTP/3andPrioritization
	Resource Prioritization

	Related Work:Performance Impact of Prioritization and QUIC
	Prioritization over h2 / TCP
	Prioritization over h3
	QUIC and Packet Loss
	Takeaway and Research Gap

	Methodology
	Flexible Testbed Setup
	Web Server with Adaptable Priorities
	Webbrowser Measurements with Browsertime
	Physical Measurement Environment

	Measured Parameters
	Prioritization Strategies
	Websites
	Scenarios
	Metrics


	Results
	Influence of Bandwidth
	Influence of Random Loss
	Influence of RTT
	Influence of Burst Loss

	Conclusion
	References

