
Secrets Revealed in Container Images:
An Internet-wide Study on Occurrence and Impact

Markus Dahlmanns
dahlmanns@comsys.rwth-aachen.de

RWTH Aachen University
Germany

Constantin Sander
sander@comsys.rwth-aachen.de

RWTH Aachen University
Germany

Robin Decker
decker@comsys.rwth-aachen.de

RWTH Aachen University
Germany

Klaus Wehrle
wehrle@comsys.rwth-aachen.de

RWTH Aachen University
Germany

ABSTRACT
Containerization allows bundling applications and their dependen-
cies into a single image. The containerization framework Docker
eases the use of this concept and enables sharing images publicly,
gaining high momentum. However, it can lead to users creating
and sharing images that include private keys or API secrets—either
by mistake or out of negligence. This leakage impairs the creator’s
security and that of everyone using the image. Yet, the extent of
this practice and how to counteract it remains unclear.

In this paper, we analyze 337,171 images from Docker Hub
and 8,076 other private registries unveiling that 8.5 % of images
indeed include secrets. Specifically, we find 52,107 private keys
and 3,158 leaked API secrets, both opening a large attack surface,
i.e., putting authentication and confidentiality of privacy-sensitive
data at stake and even allow active attacks. We further document
that those leaked keys are used in the wild: While we discovered
1,060 certificates relying on compromised keys being issued by
public certificate authorities, based on further active Internet mea-
surements, we find 275,269 TLS and SSH hosts using leaked private
keys for authentication. To counteract this issue, we discuss how
our methodology can be used to prevent secret leakage and reuse.

CCS CONCEPTS
• Security and privacy→Network security;Keymanagement.

KEYWORDS
network security, security configuration, secret leakage, container
ACM Reference Format:
Markus Dahlmanns, Constantin Sander, Robin Decker, and Klaus Wehrle.
2023. Secrets Revealed in Container Images: An Internet-wide Study on Oc-
currence and Impact. In ACM ASIA Conference on Computer and Communi-
cations Security (ASIA CCS 2023), July 10–14, 2023, Melbourne, VIC, Australia.
ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3579856.3590329

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASIA CCS 2023, July 10–14, 2023, Melbourne, VIC, Australia
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0098-9/23/07. . . $15.00
https://doi.org/10.1145/3579856.3590329

1 INTRODUCTION
While originally developed to isolate applications [24], container-
ization has become a new cornerstone of interconnected services as
it significantly eases their deployment [8, 54, 61, 74, 75, 79]. To this
end, Docker, the most prominent containerization framework [74],
uses prebuilt images that include all software dependencies neces-
sary to deploy an application [8]. Users only need to download an
image from a registry or can derive their own image by adapting
its configuration and included files. These new images can then
again be uploaded building a whole ecosystem of containerized
applications. For example, Docker Hub, the official Docker registry,
comprises more than 9,000,000 images [21] anybody can use.

With this level of public exposure, any mistake during image
creation can have drastic consequences. Most notably, including
confidential secrets such as cryptographic keys or API secrets, by
mistake or out of negligence, can introduce two security issues:
(i) attackers can misuse compromised secrets leading to potential
loss of data, money, privacy, or control, and (ii) administrators
instantiating images can rely on broken security, e.g., paving the
way for Man-in-the-Middle attacks. Aggravatingly, there is no easy
tooling to show which files have been added—accidentally adding
a secret is thus much easier than identifying such an incident.

Indeed, relatedwork traced three reused private keys authenticat-
ing 6,000 (Industrial) Internet of Things services back to the occur-
rence in a Docker image [12]. Additionally, blog entries produced
anecdotal evidence that Docker images include further confidential
security material [43, 66, 70, 77]. However, comprehensive analyses
on revealed security secrets at scale do not exist in this realm. In-
stead, such analyses focus on GitHub repositories [33, 49, 50, 58, 62–
65, 72, 88]. Hence, the extent for container images is unknown.

In this paper, we thus comprehensively study whether Docker
images include confidential security material and whether adminis-
trators reuse these compromised secrets at large scale by (i) scan-
ning publicly available Docker images for confidential security
material, and (ii) measure whether these secrets are used in prac-
tice on production deployments. To this end, we analyze images
available on the official and largest registry Docker Hub as well
as examine the entire IPv4 address space for public registries and
services relying their security on compromised secrets.

https://doi.org/10.1145/3579856.3590329
https://doi.org/10.1145/3579856.3590329

ASIA CCS 2023, July 10–14, 2023, Melbourne, VIC, Australia Dahlmanns et al.

DeploymentDeploymentDeployment

Dockerfile

Creation Push Deployment

Containers

InternetRegistry

(Local)
Files

2

Base Image
Image

Add layers,
e.g., copy
local files

3
Upload

Integrate
Root Image1

Layer 1

Layer n

…

4 Download

Image

…

Compose
Container
Filesystem

5

Figure 1: The Docker Paradigm: Dockerfiles describe files
and functions of images. Images are uploaded to a registry
for sharing and potentially numerous administrators deploy
containers based on a single image (according to [8]).

Contributions: Our main contributions are as follows.
• We found 8,076 Docker registries in the IPv4 address space that
contain not only secrets but also potentially confidential software
and likely allow attackers to replace images, e.g., with malware.

• After filtering test secrets, we identified 55,265 leaked distinct se-
crets, i.e., 52,107 private keys and 3,158 API secrets, in 28,621 im-
ages (8.5 % of images we scanned are affected).

• We show that operators use 740 compromised private keys in
practice affecting the authenticity of 275,269 Internet-reachable
hosts providing, i.a., HTTP, AMQP, MQTT, and LDAP services.

• We discuss improvements of the Docker paradigm to prevent
secret leakage and reuse in the future as well as provide our
software used to find and verify secrets [9] to support mitigation.

2 A PRIMER ON THE DOCKER PARADIGM
In contrast to other containerization frameworks, Docker [24] does
not only provide an isolated execution environment for applications.
Instead, Docker specifies an easy-to-use paradigm to create, share
and deploy ready-to-run container images [8]. These images consti-
tute the filesystems of the containers and include all dependencies
necessary for the actual applications, i.e., they can include all kinds
of files added during creation. The completeness of these images
allows to share them via (publicly accessible) registries. Figure 1
shows the structure and lifecycle of Docker images in detail, from
creating images to sharing and running them.

Image Creation: To create an image, Docker uses a user-defined
Dockerfile [18] to specify the image ingredients. First 1 , the Dock-
erfile references another image, the base image, which is down-
loaded from a registry and comprises the initial file system of the
new image. Second 2 , image layers consisting of differential snap-
shots of the file system after running commands from the Dockerfile
are created and stacked on each other [8, 20]. These commands can
include shell statements to, e.g., compile an application running
in the container. Furthermore, specific commands exist to embed
environment variables or to add files from the host system into the
image [18, 55]. While the files can be, e.g., source code or further de-
pendencies, image creators can also easily and accidentally include
(cryptographic) secrets into the image or its environment variables,
putting the service’s security at risk when leaked. Once an image

has been fully created, it exists as a self-containing unit, which is
ready-to-run but also allows little insight on what has been added.

Image Push: After generating the image, creators can push it to
a registry [19], e.g., the official and largest registry Docker Hub [21],
allowing to deploy containers among an own fleet of servers easily,
but also to share it with other users [24]. To this end, the image
layers are uploaded to the registry under a repository name and
tag 3 . Thereby, the repository name typically represents the appli-
cation in the image, and the tag describes a version. Conventionally,
creators tag the newest image in a repository with latest.

Container Deployment: To run a Docker container, users pull
an image from a registry. When pulling, users first request an
image manifest [20] from the registry, including meta information
about the image and its layers. After downloading all layers 4 ,
Docker merges the content composing the file system for the new
container 5 [8]. The application then finds an unchanged file
system with all content provided by the image creator, i.e., all
dependencies but also potentially added secrets, and can very likely
provide services to the public Internet. Since numerous containers
of various users can base on a single image, included, and thus
compromised, secrets could affect several deployments.

Takeaway: The Docker paradigm eases distribution and deploy-
ment of applications. However, insight into what is added in images
and up- or downloaded from a registry can be lost. Thus, secrets can
be leaked and reused, impairing Internet-reachable services at scale.

3 RELATEDWORK
Three streams of research motivate our analysis of confidential
security material in Docker images: studies that detect leaked se-
curity material, research on publicly available Docker images, and
Internet-wide scans disclosing security weaknesses at scale.

Actively Leaked Security Material: Currently, the search for
leaked security material focuses on code repositories. Several stud-
ies detected the leakage of passwords [33], SSH private keys [49],
Amazon Cloud API keys [72, 88], and Slack API keys [50], using the
built-in search of GitHub. To allow broader searches, researchers en-
tailed regular expressions but focused on specific file types [62–64]
or code snippets [65], i.e., the scale of this research was limited. In
contrast, Meli et al. performed a large scale study without focusing
on specific file types, showing that ∼3.5 % of the 4M analyzed code
repositories on GitHub included leaked secrets [58]. Further ap-
proaches use machine learning to improve the detection by relying
on code semantics [28], false-positive detection [67], or both requir-
ing further user input [45, 56]. Away from GitHub, research pro-
posed methods to investigate various platforms [27] and proved the
presence of secrets in publicly available Android apps [32]. A recent
study underlines that most developers experienced secret leakage,
and guidelines are insufficient for prevention [47]. While retroac-
tively deleting leaked secrets does not help [82], (non)-commercial
approaches, e.g., GitGuardian [31], TruffleHog [76], or Gitrob [37],
aim at preventing secret leakage for Git.

Docker Images: Besides Git, researchers and developers, early
on without evidence, assumed leaked secrets in images for virtual
machines or Docker and provided countermeasures [2, 4, 5, 8, 23, 42,
80]. Nevertheless, non-academic Web-blog studies [43, 66, 70, 77]
still find leaked secrets in images on Docker Hub. However, these

An Internet-wide Study on Secrets in Container Images ASIA CCS 2023, July 10–14, 2023, Melbourne, VIC, Australia

Table 1: Steps from our repository selection to the finally included and analyzed layers. For found repositories, we give
information on their distribution over our selected search terms in a query group, and for images on their distribution over
found repositories. For analyzed images, we report on the distribution of their age, and for layers, we show the distribution of
their sizes. By analyzing 1,388,414 layers, we examine all files included in images of considered repositories for leaked secrets.

Query
Group

Repositories (Section 4.1.1) Images (Section 4.1.2) Layers (Section 4.1.3)
distinct # latest none analyzed [+age] # [+size] distinct

Standard

480,065
min: 0
𝑝25 : 684
𝑝50 : 3,563
𝑝75 : 10,000
max: 10,000

296,598 −−→
79 %

357,898

7,966,650
min: 0
𝑝25 : 1
𝑝50 : 1
𝑝75 : 3
max: 69,828

171,857 62,949

233,649
min: 0 d
𝑝25 : 409 d
𝑝50 : 899 d
𝑝75 : 1,469 d
max: unset

3,967,848
min: 0 B
𝑝25 : 534 B
𝑝50 : 547 kB
𝑝75 : 20MB
max: 27GB

1,166,570 −−→
76 %

1,388,414

IIoT

199,311
min: 0
𝑝25 : 0
𝑝50 : 117
𝑝75 : 7,183
max: 10,000

76,786 −−→
17 %

1,949,976
min: 0
𝑝25 : 1
𝑝50 : 1
𝑝75 : 2
max: 29,357

44,889 18,872

57,914
min: 0 d
𝑝25 : 390 d
𝑝50 : 847 d
𝑝75 : 1,401 d
max: unset

1,485,864
min: 23 B
𝑝25 : 602 B
𝑝50 : 981 kB
𝑝75 : 21MB
max: 30GB

326,298 −−→
16 %

studies either limit their scale [43, 70, 77] to a few thousand im-
ages/secrets or restrict their methodology [66] to process large
amounts of available images. The latter study [66] finds 46,076 af-
fected images among 6.3M images on Docker Hub, but only con-
siders information available in Dockerfiles, e.g., specific file paths.
Meanwhile, SecretScanner [14], a smaller secret search tool, imple-
ments a function allowing users to find secrets in Docker images.

Still, a comprehensible, large-scale, and methodology-driven
analysis on introduced security weaknesses by leaked security
material is missing. Instead, large-scale studies on Docker images
focused on data compression [86, 87], software vulnerabilities [44,
55, 84, 85], or typosquatting of image names [54]. Hence, as of now,
it is unclear how widespread secret leakage is in images on Docker
Hub as well as private Internet-reachable registries. Moreover, it is
unknown to what extent these compromised images are then used
on the Internet and whether they weaken security at scale.

Internet Measurements: For understanding deployment se-
curity at scale, Internet-wide measurements have been a valuable
tool in the past. Internet scan services, such as Shodan [71] or Cen-
sys [25], fetch and publish meta-information, e.g., security configu-
rations, on Internet-reachable services. Although these services of-
ten helped researchers analyzing the security of connected devices,
e.g., cars [78] or (insecure) Industrial IoT (IIoT) deployments [35],
they usually do not see all deployments [3]. Hence, researchers
frequently conduct own active Internet measurement, e.g., using
ZMap [26]. On the web, these measurements allowed to analyze the
deployment of new TLS versions [41, 51] and revealed wide secu-
rity configuration mistakes [7, 10, 38–40, 48, 52] or implementation
deficits [1, 36, 73]. Aside the web, researchers assessed the security
of SSH services [29, 81] and key-value stores leaking confidential
data [34]. For the IoT and IIoT, research revealed many deployments
relying on vulnerable software [6, 30, 46] and communicating with-
out any security mechanism [12, 57, 59, 60, 83], e.g., access control.
Even with built-in security features, operators often configure such
services insecurely [11]. For example, a massive reuse of certifi-
cates was traced back to a Docker image including certificates and
corresponding private keys [12] jeopardizing the authenticity of
numerous deployments. Based on this, we claim that it is probable
that there are further public Docker images that wrongly include

confidential secrets and harm security on the Internet—especially
when looking at the sheer size of Docker and Docker Hub.

Takeaway: Although the broad leakage of security secrets in
code repositories is well understood, the spread of revealed secrets in
Docker images and the introduced security risk for the Internet are
unknown. However, known secret leakage detection techniques and
Internet measurements are predestined to shed light on these issues.

4 COMPOSING OUR DATASET
To answer whether Docker image creators actively compromise
security secrets by publishing them in openly available Docker im-
ages, we set out and retrieve images from Docker Hub (Section 4.1)
and publicly reachable private registries (Section 4.2).

4.1 Retrieving Images from Docker Hub
Table 1 guides through our composition process on Docker Hub,
which has three tasks: (i) composing a list of repositories, (ii) select-
ing one image per repository to widely spread our analysis, and
(iii) identifying layers the images consist of.

4.1.1 Repositories. While Docker Hub limits the number of image
downloads [22] and we cannot download and analyze all 15 PB of
images available on Docker Hub [13] due to runtime and bandwidth
restrictions, our analysis requires a selection of repositories of
interest. Furthermore, Docker Hub does not support listing all
available images to choose from. Hence, we use specific search
terms to get images users retrieve when searching via the Web
interface. Our search terms (which we elaborate in more detail
in Appendix B) build two query groups (Table 1 (left)); Standard
comprises mainstream communication protocol names [68] and
frequently used technologies [74] for a wide analysis of images
referencing current issues. For comparison and more focusing on a
specific area, we choose the Industrial Internet of Things (IIoT) as
past studies showed a great susceptibility to security faults [11, 12,
35, 53, 59, 60], i.e., IIoT includes protocol names from this area.

We list the number of repositories covered by our analysis per
query group, i.e., the sum of found repositories of all search terms
of a group, in Table 1 (column Repositories-#). To further convey

ASIA CCS 2023, July 10–14, 2023, Melbourne, VIC, Australia Dahlmanns et al.

Table 2: Overview of found private Docker registries, available image repositories, their tags, layers, and final layers included
in our dataset. We added 258,889 randomly selected image layers, preferably from images tagged with latest, to our dataset.

Date # Registries
Repositories Images Layers

distinct # latest none selected # distinct selected [+size]

22-08-01
8,076

non-TLS: 7,593
TLS: 483

81,570
min: 1
avg: 10
max: 100

51,163

53,448

6,160,615
min: 0
avg: 75
max: 38,638

34,377 3,704 55,746 2,480,137 516,913

551,617
258,889

min: 87 B
avg: 6MB
max: 249MB22-08-06

5,656
non-TLS: 5,184

TLS: 472

77,900
min: 1
avg: 13
max: 100

50,611

6,350,311
min: 0
avg: 81
max: 38,638

31,997 3,289 55,071 2,445,347 491,085

the prevalence of our search terms, we indicate the minimum, max-
imum, and 25-, 50-, and 75-percentiles of search results for included
terms, i.e., higher values of lower percentiles would imply a higher
prevalence. While both query groups contain terms that lead to no
results (min), i.e., the term is not mentioned in any repository name
or description, terms in the standard group generate more results
due to their closer correlation to frequently used technologies than
IIoT protocols (𝑝25, 𝑝50, 𝑝75). Docker Hub’s API limits the number
of results to 10,000 (max).

As different search terms lead to overlapping repositories, we
further report on the distinct number of repositories gradually, i.e.,
per query group, and overall. In total, we gathered 357,898 distinct
repositories subject to our study of which 79 % are uniquely added
by our standard search terms and 17 % by IIoT related search queries.

4.1.2 Images. Table 1 (column Images-#) indicates how many im-
ages were available in total over the distinct repositories of a search
group.While repositoriesmostly contain different images, including
the same software in other versions and thereby comprising similar
files, we choose to analyze one tag per repository to spread our
analysis as widely as possible. Here, we select images tagged with
latestwhich is used as Docker’s default and typically includes the
newest version of an image. However, not all repositories contain
images tagged with latest (as shown in Table 1 (column Images-
latest). Here, we select the image with the latest changes (as
reported by Docker Hub’s API). Empty repositories (Table 1 (col-
umn Images-none)), i.e., have no image layers available, cannot
include any secrets. Besides the number of images that are covered
by our study (column Images-analyzed), we also report on the age
of the images to analyze how long they are already available on
Docker Hub. The ages of images included in both query groups
roughly have the same distribution indicating that although the
number of images found by our IIoT-related queries is lower im-
age creators update their images in the same frequency as image
creators of images included in our Standard group.

4.1.3 Layers. While we report on the number of layers included
in all images (Table 1 column Layers-#), different images often
share the same layers, e.g., layers from frequently used base images.
Hence, to speed up our search for leaked secrets, we analyze each
distinct layer only once. We show the distinct number of layers
gradually, i.e., per query group, and overall. To cover all 357,898
repositories, we analyze 1,388,414 layers. (76 % uniquely added by
Standard-related, 16 % by IIoT-related repositories).

4.2 Images from Private Docker Registries
Since image creators might upload sensitive images preferably to
private registries, we want to include images from these registries
in our analysis. Table 2 shows our steps taken to extend our dataset
with images from private registries, i.e., we search private registries,
and, subsequently, include a subset of available layers.

4.2.1 Find Private Registries and Repositories. To find publicly
reachable Docker registries, we scan the complete IPv4 address
space for services running on the standard port for Docker registries,
i.e., TCP port 5000, under comprehensive ethical measures (cf. Ap-
pendix A) twice to analyze short-term fluctuations (Table 2 (left)).
Both times, we perform a TCP SYN scan using zmap [26], identi-
fying hosts running a service behind this port and subsequently
send an HTTP request as defined by Docker’s Registry API [19] for
verification. Whenever we do not receive a valid HTTP response,
we retry via HTTPS. While we found up to 8,076 private registries
on 22-08-01, the difference in found registries in comparison to our
scan on 22-08-06 is due to registries in Amazon AWS-related ASes
that do not reply after our first scan anymore. Since these registries
only contain the same and single image (uhttpd), they might relate
to another research project, e.g., implementing a registry honeypot.

Contrarily to Docker Hub’s API, the API of private registries
allows listing available repositories without search terms. However,
we limit our requests to receive a maximum of 100 repositories per
registry to prevent any overloads. As such, the found private reg-
istries provide 81,570 resp. 77,900 repositories. Since the registries
do not implement access control for read access, clients are able to
download all included images. Notably, by default also write access
is not restricted [17], i.e., attackers might be able to inject malware.

While being publicly available on private registries but not fil-
tered by any search terms, the content of these images is of special
interest. Here, often the repository name indicates the image’s con-
tent and thus allows conclusions on widely distributed applications,
i.e., over both measurements, uhttpd is the most reoccurring repos-
itory name (reoccurring 2,596 times, but only during our first scan).
Repository names on the second and third place, i.e., nginx and
redis, indicate proxy and cloud services where image creators
might have included security secrets before uploading it to their
registry. Beyond the scope of security secrets, other repository
names occurring less often, e.g., api-payments-gateway_prod or
smarthome_web, imply that image creators might include confiden-
tial software, source code, private data, or information on systems
especially worthy of protection in openly available Docker images.

An Internet-wide Study on Secrets in Container Images ASIA CCS 2023, July 10–14, 2023, Melbourne, VIC, Australia

Table 3: Domains of secrets covered in our analysis, their potential threats (left), the number of (distinct) matches we found
with our corresponding regular expressions in images on Docker Hub and private registries (center), as well as the number of
matches we validated (right). We excluded rules with too arbitrary, thus unverifiable, matches (gray) from validation process.

Regular Expressions (Section 5.1.1 / Appendix C) (Distinct) Matches (Sec. 5.1.2) Valid Secrets (Section 5.1.3)
Domain Potential Threat / (Service) Type Images Variables Images Variables Total

Private Key Perform man-in-the-middle attacks, fake identity, . . . 1,377,336
(62,282)

2
(1)

52,107 0 52,107
PEM Private Key, PEM Private Key Block, PEM PKCS7, XML Private Key

A
PI

Cloud

Manage services, create new API keys, reconfigure DNS, access emails / SMS,
control voice calls, read / alter private repositories, . . .

6,208,995
(74,460)

416
(84)

2,880 67 2,920Alibaba[76] , Amazon AWS[76] , Azure[76] , DigitalOcean[76] , Github[76] , Gitlab (v1, v2)[76] ,
Google Cloud[76] , Google Services[58] , Heroku[76] , IBM Cloud Identity Service[76] ,

Login Radius[76] , MailChimp[58] , MailGun[58] , Microsoft Teams[76] , Netlify[76] , Twilio[58]

Financial
List / perform payments, inspect / alter invoices, . . .

42,901
(543)

4
(2)

23 2 25Amazon MWS[58] , Bitfinex[76] , Coinbase[76] , Currency Cloud[76] , Paydirt[76] , Paymo[76] ,
Paymongo[76] , Paypal Braintree[58] , Picatic[58] , Stripe[58] , Square[58] , Ticketmaster[76] , WePay[76]

Social Media Tweet, access direct messages, retrieve relationships, . . . 6,365,854
(439,822)

14
(8)

209 4 213
Facebook[76], [58] , Twitter[58]

IoT Retrieve (privacy-sensitive) IoT data, e.g., track cars, . . . 297
(117)

0
(0)

0 0 0
Accuweather[76] , Adafruit IO[76] , OpenUV[76] , Tomtom[76]

4.2.2 Image and Layer Selection. For all found repositories, we
collect the lists of available images and their tags (Table 2 (center)).
Although private registries typically do not implement any rate
limiting like Docker Hub, we do not want to overload found reg-
istries or their Internet connections. Hence, to spread our analysis
as far as possible but limit the load on each registry, we choose
one tag per image. Similar to our selection process on Docker Hub,
typically, in each repository, we select images tagged as latest to
download the corresponding manifest. Whenever no latest image
is available, we sort all available images naturally by their tag (to
account for version numbers as tags), and select the maximum (i.e.,
the newest version), as the API does not provide any information on
the latest changes. Subsequently, we download the corresponding
image manifests to retrieve accompanying layers. To further limit
load on Internet connections of found registries, we do not down-
load all available layers for included secrets. Instead, we randomly
select layers of chosen images such that the sum of their sizes does
not exceed 250MB per registry and per measurement. All in all, we
added 258,889 layers from private registries to our dataset.

Takeaway: In parallel to Docker Hub numerous private registries
exist providing images to the public. Overall, we assemble a dataset
of 1,647,300 layers from 337,171 images subject to our future research.
Furthermore, private registries might allow attackers to, e.g., inject
malware, potentially infecting container deployments at scale as well.

5 LEAKED SECRETS IN DOCKER IMAGES
Next, we search in considered images for included secrets (Sec-
tion 5.1), discuss the origin of affected images to later evaluate reme-
dies (Section 5.2), and analyze also found certificates compromised
due to private key leakage to estimate arising risks (Section 5.3).

5.1 Searching for Secrets
To analyze available images for included secrets, we align our ap-
proach to established methods [58, 76], i.e., we choose and extend
regular expressions identifying specific secrets and match these on
files and environment variables. Additionally, we extensively filter
our matches to exclude false positives.

5.1.1 Regular Expression Selection. We base our selection of reg-
ular expressions on previous work to find secrets in code reposi-
tories [58, 76] (we further elaborate on our election process and
expressions in Appendix C). Table 3 (left) names the domains of se-
crets that our selected expressions match and indicates how attack-
ers could misuse these secrets. We start with regular expressions
composed by Meli et al. [58] due to their selection of unambigu-
ous expressions (reducing false positives) matching secrets with a
high threat when leaked. We extend their expressions for private
keys to match a larger variety, e.g., also OpenSSH private keys.
Moreover, we widen the set by expressions matching API secrets
of trending technologies [74] based on match rules from Truffle-
Hog [76]. However, TruffleHog’s rules are relatively ambiguous and
incur many false positives, which TruffleHog filters by validating
the API secrets against their respective endpoints. As our ethical
considerations do not allow for any further use of the secrets (cf.
Appendix A), we focus on rules which expect at least one fixed
character and later add further filtering and verification steps.

5.1.2 Matching Potential Secrets. To analyze whether image layers
include secrets, we match the selected regular expressions on the
images as follows (we will open-source our tool on acceptance of
this paper):We download and decompress the image layers and then
match our regular expressions on the included files. Moreover, we
recursively extract archive files up to a depth of 3 and match again.
AsAPI documentations often suggest setting secrets in environment
variables and not writing them into files, we analyze set variables.
Since Docker allows downloading the small image configuration
containing set variables aside of the image, i.e., potential attackers
do not have to download and search through all files to find included
secrets, we analyze variables separately: As such, we only download
the image configuration file and iterate our regular expression over
set environment variables. Here, we adapt the API expressions,
as some expect a specific term before the secret (cf. Table 5 in
Appendix C), e.g., the service name as part of a variable name. As
the variable names and values are separated in the configuration file,
we also split the according expressions and match them individually.

ASIA CCS 2023, July 10–14, 2023, Melbourne, VIC, Australia Dahlmanns et al.

Table 3 (center) lists for each secret domain how many matches
and how many distinct matches we found in both, image content
and environment variables. Notably, while only covering two ser-
vices, i.e., Facebook and Twitter, the expressions in the Social Media
domain matched most often over all domains, which already indi-
cates that API secrets of this domain are often suspect to leakage.

The high redundancy of the matches, visible as the significant
decrement between distinct and non-distinct matches, already hints
at invalid matches, e.g., private keys or example API tokens preva-
lent in unit tests or documentation in several layers. Indeed, the
most reoccurring match AKIAIOSFODNN7EXAMPLE (291,949 times in
20,497 different layers), is an example key for Amazon AWS API
from a library documentation which creators usually include in
their images. We thus validate our matches extensively.

5.1.3 Match Validation. To exclude test keys for cryptographic
libraries, example API secrets, and completely invalid matches to
get a near lower bound of harmful leaked secrets in Docker images,
we use different filters depending on the secret type. While we show
the number of resulting valid secrets in Table 3 (right), Figure 2
details the filtering results separated by the match’s origin, i.e.,
image content or environment variable and domain.

Private Keys: Our regular expressions for private keys match
on PEM or XML formatted keys. Thus, we can first exclude every
match that is not parsable (filter Unparsable). Figure 2 shows that
only a minority of all potential private keys in image layers are un-
parsable, underlining that image creators include and compromise
private keys actually usable in final Docker containers for practical
operations. Contrarily, the single match within the environment
variables is only a key fragment and thus not parsable.

Still, we expect a high number of software test keys in Docker
images among found keys, as they are part of several libraries cre-
ators might include in their images, e.g., OpenSSL. Since users will
most likely not use such keys to secure their deployments, we fil-
ter out test keys that are included in kompromat [69], a repository
listing already compromised secrets (filterKompromat). More specif-
ically, we filter keys occurring in RFCs (6), libraries for software
tests (1,820), or as special test vectors (3).

To also account for software test keys that are not available in
kompromat, we analyze the file paths where respective keys were
found (filter File). While we do not generally exclude all paths con-
taining signal words indicating test or example keys, as users might
use such paths also for keys they generated and use in practice, we
apply different measures. For instance, based on locations of test
keys identified using kompromat, we deliberately exclude matches
in similar locations, i.e., keys within directories where we already
detected test keys and all parent directories under which we find
more than 2/3 test keys. Last, we exclude file paths typically used
by libraries (cf. Appendix D), e.g., /var/lib/*, as there is a lower
chance that users adapt their keys here.

Figure 2 shows that these filters process the largest share of
excluded private key matches. It further indicates that kompromat
only includes a minority of software test keys, i.e., is not directly
usable to exclude all false-positive matches. Still, many of the found
keys are not filtered and, thus, most likely, no software test keys.

In total, we found 52,107 valid private keys potentially in use in
practice (cf. Table 3 (right)). Since all of these keys are located in

0.00 0.25 0.50 0.75 1.00

(117)

(439,822)

(543)

(74,460)

(62,282)

Images

0.00 0.25 0.50 0.75 1.00

Variables

IoT

Social Media

Financial

Cloud

Private Key

(0)

(8)

(2)

(84)

(1)

Filter: Unparsable Kompromat File Sequence Rule Valid

Figure 2: Validation of matches. While most private key
matches are valid, API secret matching in Docker images
is challenging and requires well-configured filters. Several
filters treat a large share of matches in parallel. Absolute
number of distinct matches in parentheses.

files, attackers would have to download respective image layers to
get access and not only meta information to retrieve environment
variables. Still, since these keys are publicly available and thus
compromised, usage in production puts authentication at stake, i.e.,
attackers can perform impersonation attacks.

API Secrets: Since our ethical considerations deter us from vali-
dating API secrets against their service endpoints (cf. Appendix A)
as applied by TruffleHog [76], and related methods for false positive
detection focus on matches in source code [28, 45, 56, 67], which
is not prevalent in Docker images, we need alternative measures
to filter invalid matches. By manually supervising our filtering, we
ensure that the final set only includes valid-looking API secrets.

Based on invalid matches in GitHub code repositories [58], we
expect human-created example keys that contain keywords, e.g.,
EXAMPLE, or consecutive character sequences, e.g., XXXX, that we
must exclude (filter Sequence). To filter consecutive sequences, we
search for segments consisting of ascending, descending (both with
a length of four), and repeating characters (with a length of three).
Furthermore, we filter matches including sequences that occur un-
usually often, i.e., we create (4, 7)-character-grams of all matches,
exclude grams created over fixed parts of our regular expressions
as well as grams only containing digits, and count the number of
occurrences over all API matches. To account for randomly reoc-
curring grams, we filter all matches that include grams occurring
29 times more often than the average. We manually ensured that
our filter is not too restrictive but also not to loose leaving often
reoccurring grams out. Figure 2 shows that this filtering excludes a
large share of matches. Interestingly, the most reoccurring gram is
.... [sic!], which we could trace back to DNA sequences in images
related to bioinformatics underpinning the large variety of different
and unexpected file types occurring in Docker images.

Similar to filtering private keymatches by their file paths, we also
filter APImatches occurring inmanually selected paths (filter File, cf.
Appendix D). Essentially, we revisited the location and file types of
all matches and excluded paths that most likely do not include any
valid secrets compromised by publishing these in Docker images.
Figure 2 indicates that the filtered paths often also include matches
filtered by our sequence filter and thus that libraries include strings
similar to secrets, e.g., in their documentation.

Still, after manual revision of the remaining matches, we con-
clude that rules which match on a fixed term before the secret, e.g.,

An Internet-wide Study on Secrets in Container Images ASIA CCS 2023, July 10–14, 2023, Melbourne, VIC, Australia

0 500 1000 1500 2000 2500 3000
Secrets

100

102

O
w

ne
rp

er
Se

cr
et

5000030000 50000

Private Key
API

Figure 3: Total secrets found in images of a specific number
of owners. Most were found in images of single owners.

the service name, and then allow a specific length of characters are
too ambiguous for usage on files in Docker images as they match
on arbitrary content, e.g., on hashes with the service name in front.
We thus decide to exclude matches of these rules from our further
analysis (gray in Table 3 (left)), i.e., consider these matches invalid,
to ensure the integrity of our further results. Still, a minority of
these matches might be valid, potentially enabling attackers to
compromise production services or access confidential data.

Comparing the filter results of API secret matches in files and
environment variables, the share of valid matches in variables is
significantly higher than in files indicating that image creators less
likely include secret placeholders in variables. Still, as Table 3 (right)
shows, most secrets are located within the images. Thus, attackers
have a higher chance of finding valid secrets when downloading
both environment variables and image content.

In total, we found 3,158 distinct API secrets in Docker images,
mostly related to services from the cloud domain (2920 secrets).
Although we cannot prove the functionality of these secrets, the
occurrence of 1,213 secrets for the Amazon AWS API or 177 secrets
for the Alibaba API indicate that attackers might be able to reconfig-
ure cloud services maliciously, e.g., by editing DNS or VM options.
Additionally, we found evidence for secrets allowing attackers to
access private data from social media (213 secrets), or even access
financial services (25 secrets, most matches: Stripe API). Notably,
although we focused our image search partly on IoT terms, we
found no valid secrets from selected IoT services.

5.1.4 Secrets Owned by Single Users. Based on findings over leaked
secrets found on GitHub [58], we expect most valid secrets to re-
siding in images of single users (as users do not share their secrets
intentionally). Contrarily, invalid matches, e.g., library test keys,
would mainly reside in images of multiple owners.

Thus, to check whether the matches we identified as valid secrets
are located in images of single users, we analyze the number of
different owners that include a specific secret in their images. To
this end, for images from Docker Hub, we consider the repository
owner (embedded in the repository name) as the owner of a secret.
For private registries, we consider the registry’s IP address as the
owner (assuming that owners only run a single registry and ne-
glecting that registries might use different (dynamic) IP addresses).

Figure 3 shows that the largest share of valid secrets indeed
occurs in images of single owners. 95 % of private keys (49,667 keys)
and 90 % of API secrets (2,845 secrets) reside in images of single
owners underpinning that these should be protected. Moreover, we
can trace 95 private keys and 19 API secrets of multiple owners
back to inheritance. These secrets were already included in the base
image, but w.r.t. to the overall occurrence, we conclude that secret
spread due to inheritance is no major problem.

To responsibly inform image creators about leaked secrets in
their images, we reach out to them whenever possible (1,181 ex-
tractable and valid e-mail addresses) and also contacted the operator
of Docker Hub (cf. Appendix A). Early on, we received notifications
of creators that removed found secrets from their images.

Takeaway: 55,265 found secrets show that image creators publish
confidential information in their publicly available Docker images. As
attackers have access to these secrets relying authentication and other
security mechanisms are futile, potentially leading to compromised
servers or leaked privacy-sensitive data.

5.2 Origin of Leaked Secrets
Next, we analyze where the validated secrets stem from to see
whether specific images are more affected and why. To this end, we
examine the distribution of affected images and compare between
private registries and Docker Hub, as well as IIoT specific and
Standard images. Moreover, we evaluate which operation in the
original Dockerfile led to the insertion of secrets and inspect the
file paths where they reside to get an intuition for their usage.

5.2.1 Docker Hub Leads Before Private Registries. We already dis-
covered that private registries include potentially sensitive images.
However, until now, it remains unclear whether images on these
registries are more often subject to secret leakage than images from
Docker Hub, e.g., due to creators believing that these are unavail-
able for the public. Thus, we analyze whether leaked secrets occur
more often in images from Docker Hub or from private registries.

While we found that 28,621 images (8.5 % of images analyzed)
contain valid secrets, 9.0 % of images from Docker Hub and 6.3 % of
images from private registries are affected. Thus, creators upload se-
crets to Docker Hub more often than to private registries indicating
that private registry users may have a better security understand-
ing, maybe due to a deeper technical understanding required for
hosting a registry. Yet, both categories are far from being leak-free.

For Docker Hub, besides the increased fraction of leaked secrets,
we see an issue for others, i.e., other users can easily deploy con-
tainers based on these images. Thus, there is a higher chance their
containers rely their security on included and compromised se-
crets. For example, a shared certificate private key could lead to an
impersonation attack. In case of shared API secrets, all deployed
containers might use the same API token leading to exhausted rate
limits in the best case, but maybe also to overwritten or insuffi-
ciently secured private data. As a single API token does not allow
fine-granular exclusions, i.e., it is either valid or revoked for all
users, a revocation would also interfere with benign users.

Independent of their origin, attackers could equally misuse the
secrets we found to leverage authentication or access privacy- or
security-sensitive data. As such, both user groups of Docker Hub
and private registries leak sensitive information, be it through un-
awareness or a deceptive feeling of security.

5.2.2 Domains are Similarly Affected. For our image selection on
Docker Hub, we specifically included search terms relating to the
IIoT, as past research has shown significant security shortcomings
in this area. However, until now it is open whether found images
of a certain domain are suspect to revealed secrets more frequently

ASIA CCS 2023, July 10–14, 2023, Melbourne, VIC, Australia Dahlmanns et al.

0.0 0.2 0.4 0.6 0.8 1.0
Frac. of Secrets

API Secrets

Private Key

Download

Download

Git

Git

ssh-keygen

ssh-keygen

Install sshd

Install sshd

File Exec.

Figure 4: Operations that include secrets. Most API secrets
are inserted by file and private keys by execution commands.

than other images. To answer this question, we trace images that
include secrets back to the query group that led to their inclusion.

We discovered that 7.2 % of the images only found using queries
from the Standard query group and 6.2 % of images only from the
IIoT group include valid secrets1. Thus, in case of secret leakage
via Docker images and based on our selected search terms, the
IIoT domain does not perform worse than our Standard domain.
However, it underpins that the problem of secret leakage in Docker
images is a prominent issue for all domains.

5.2.3 Fresh Private Keys and Copied API Secrets. To find counter-
measures against secret leakage in Docker images, it is important to
understand how these leaked secrets became part of Docker images.
More specifically, for private keys, it is unclear whether creators
execute commands in the Dockerfile to create fresh keys, which are
then published in images, or whether they manually add them, i.e.,
using ADD or COPY in a Dockerfile. Additionally, both, private keys
and API secrets, could be indirectly included through other means,
e.g., by cloning Git repositories or downloading further data.

Figure 4 shows that while most API secrets are typically inserted
by file operations (File), e.g., copied from the image creator’s host
system, private keys are predominantly included by executing a
command within the Dockerfile (Exec.)2. Thus, private keys might
be either downloaded or generated during the creation process.

To further trace the insertion of secrets in Exec. layers back to the
responsible executed commands, we analyze these commands. Since
image creators often concatenate several bash commands whose
output is then included in a single layer without any opportunity
to associate files (and thus secrets) to a specific command, we count
each of the commands related to the leakage of a secret. We show
the most prominent of all 575 commands associated with secret
leakage in Figure 4. In fact, 30 % of private keys were generated in
layers where image creators installed the OpenSSH server. Since
the installation triggers ssh-keygen to generate a fresh host key
pair, it is automatically included in the image.

While the procedure of automatic key generation is beneficial on
real hardware, i.e., users are not tempted to reuse keys on different
hosts, in published Docker images it automatically leads to compro-
mised keys and thus puts the authenticity of all containers relying
on this image in danger. Further 8.1 % of found private keys were
generated by a direct call of ssh-keygen, e.g., to generate fresh

1Images found by both query groups are not included.
2Secrets can be associated with both, File and Exec. operations, e.g., when first ADDed
to the image and then copied or moved internally using cp or mv.

/

100.0%

Other

17.9%

etc

69.9%

home
3.5%
iotx

1.4%
root
4.5%
usr

2.9%

Other

29.0%
pki

1.1%

ssh

52.9%
ssl

11.5%
mysql
0.9%

.ssh
2.0%
src

1.2%

Other

30.2%
tls

0.8%

private

11.1%
mysql bina...

0.6%

app
1.0%

(a) Private Key

/

100.0%

Other

36.8%

Files
6.3%
app

15.6%
code
3.6%

headless

11.0%

usr

19.7%

var
6.9%

Other

57.9%
Users
5.8%

evrekaTest
2.1%
.cache

11.0%
share
6.4%
src

7.9%
www
6.0%

Other

62.6%
ContainerA...

5.8%

mozilla

9.6%
nginx
6.0%
app

7.5%
html
3.4%

(b) API Secrets

Figure 5: Most frequent file paths where we found secrets.
While the major location of found private keys focuses on a
few file paths, i.e., most private keys are stored where SSH
host keys reside, API secrets are spread further.

SSH client key material, implying the planned usage in production
of generated but compromised key material.

Given the massive secret leakage on GitHub [58], we also ex-
pect secrets to be included in images by cloning Git repositories.
However, only a minority of secrets can be associated with Git,
suggesting that the sets of users leaking secrets via Docker and
GitHub are distinct. Furthermore, only a minority of secrets were
downloaded (using wget or curl) both indicating that the secrets
we found were most likely exclusively leaked in Docker images and
underpinning that they are actually worth being protected.

5.2.4 File Paths Indicate Usage. To further reason about the usage
of our found secrets, we analyze their file paths within the images
assessing where secrets stem from and how services apply them.
Separated by private keys and API secrets, Figure 5 shows the
distribution of secrets throughout the directory structure of all
images and focuses on the top seven paths.

We found themajority of private keys in /etc/ssh underpinning
a high prevalence of compromised SSH host keys. Another large
share occurs in /etc/ssl suggesting compromised keys used for
host authentication via TLS. This path is also the location for TLS
default (“snakeoil”) keys that are used if no other information is
provided. They are auto-generated when the ssl-cert package is
installed such that every host possesses a unique default key-pair.
However, when installed during the creation of Docker images,
the key is included in the image and, thus, compromised when
shared. Based on the key’s filename, indeed, we found 6,447 of such
keys which are potentially used to offer TLS services with broken
authenticity to the public Internet.

Even more alarming, we found keys lying in /etc/pki, indicat-
ing that included keys are associated with a Public Key Infrastruc-
ture (PKI), and thus potentially destined to offer services to a higher
number of users. Furthermore, /iotx contains private keys used in
relation to the IoT and, as per the repository names, for authenti-
cation using IoT protocols like CoAP and MQTT. Thus, attackers
possessing these private keys can leverage the authentication of
all connections users establish to each container created based on
these images. In fact, attackers then can access or alter transmit-
ted confidential information, e.g., privacy-sensitive user data or

An Internet-wide Study on Secrets in Container Images ASIA CCS 2023, July 10–14, 2023, Melbourne, VIC, Australia

commands of IoT services potentially impacting cyber-physical
systems. In addition, we found keys in /root/.ssh, i.e., a location
where SSH client key pairs typically reside. Hence, these keys might
enable attackers to take over SSH servers, trusting these keys and
having access to confidential data.

Contrarily, foundAPI secrets are distributedmore evenly through
the directory structure. We found the largest share in /app, which
is the example folder for including own applications in Docker
images [16], underlining that image creators compromise their own
application’s API secrets.While similar holds for /usr/src/app, an-
other large share of secrets resides in /headless/.cache/mozilla
stemming from Firefox profiles containing Google Service API se-
crets in cached JavaScript files. Although these secrets are most
likely usable in combination with Google Maps or Google Analyt-
ics and thus meant to be shared with website visitors, this leakage
implies privacy issues: An attacker could retrace the creator’s brows-
ing history, which apparently exists due to the cache being filled,
which could show potentially sensitive information.

In addition, we found a large share of Google API secrets (both
Cloud and Services) in /code/evrekaTest. Since we do not use
API tokens for further validation (cf. Appendix A), we cannot be
entirely sure whether these secrets are usable or only generated for
testing purposes. However, manual supervision of the matches and
including files suggest that they could be actually in use.

Takeaway: 8.5 % of analyzed images contain and thus leak secrets.
While the majority stems from public Docker Hub images regardless
of their domain, also private registries leak a significant number
of secrets. Notably, associated file paths and commands imply their
production use and that various authenticationmechanisms are futile.

5.3 Compromised Certificates
To further understand the severity of potentially compromised
systems, we now focus on found certificates as they provide various
information on their relations and use cases. Thus, we research the
trust chain, validity, and usage parameters of 22,082 compromised
certificates occurring in Docker images.

Trust Anchors:While self-signed certificates indicate the usage
of certificates in controlled environments, i.e., clients need a safelist
with all certificates they can trust, CA-signed certificates imply the
usage at larger scale as these are trusted by all clients having a
corresponding root certificate installed. We consider certificates
where the issuer and common name are similar as self-signed and
CA-signed otherwise. For CA-signed certificates, we consider those
which we can validate against widespread root stores3 as signed
by a public CA, and otherwise signed by a private CA.

We discovered that the majority of found compromised certifi-
cates (61 %) are self-signed, but also 7,546 private CA-signed and
1,060 public CA-signed certificates. While all systems relying on
these certificates open the door for impersonation attacks, the oc-
currence of CA-signed certificates is especially alarming as such
certificates are typically planned to provide authenticity to many
clients/users and are universally accepted. Thus, knowing these cer-
tificates’ private key not only allows attackers to perform Man-in-
the-Middle attacks but also enable them to sign malicious software
to compromise other’s systems.

3Stores from Android, iOS/MacOS, Mozilla NSS, OpenJDK, Oracle JDK, and Windows.

Validity: As a countermeasure against key leakage, the certifi-
cate’s lifetime enforces service operators to request new certificates
from time to time, as clients should reject outdated certificates.
Notably, 141 public-CA, 4,970 private-CA, and 10,629 self-signed
certificates were valid when we downloaded their containing image
layer, showing that the authenticity of relying services is at stake,
i.e., the lifetime does not help in these cases of key leakage.

Interestingly, 631 public-CA, 6,486 private-CA, and 12,263 self-
signed certificates were valid when added to their Docker image (as
per the image’s history timestamp). While these larger numbers
show that the limited lifetime of certificates helps to mitigate leaked
private keys, they also indicate that key leakage in images is tedious,
i.e., more and more private keys are leaked.

Usages: The usage attributes of certificates can optionally in-
dicate the practical use-case of CA-signed certificates and, thus,
further help to understand the severity of the private key leak-
age. While all public-CA-signed certificates allow for authentica-
tion (digital signatures), and 799 are explicitly declared for server
authentication, 3 (private-CA: 22) allow for code-signing. Thus,
knowing the private key of these certificates, does not only allow
attackers to perform Man-in-the-Middle attacks, but also enable to
sign malicious software to compromise others systems.

Takeaway: 22,082 found compromised certificates show that leaked
private keys can have extensive influence on the authenticity of ser-
vices and software. Thus, attackers can impersonate services, decrypt
past communications, or sign malware to infect production systems.

6 SECRET USAGE IN THEWILD
Until now, it is open whether the found compromised secrets are
used in practice and, if so, to what extent, i.e., whether a single
compromised secret is reused due to several Docker containers
stemming from the same image. While we cannot check the validity
of API secrets by using them against their destined endpoint due to
our ethical guidelines (cf. Appendix A), we can investigate whether
hosts on the Internet use found private keys for authentication.

To assess whether Internet-reachable hosts can be suspect to
impersonation attacks due to secret leakage in Docker images, we
check for TLS- and SSH-enabled hosts relying their authentication
on compromised private keys by using the Censys database, i.e.,
15 months of active Internet-wide measurement results [25]. Here,
we search for hosts presenting a public key, i.e., as SSH host key or
within a TLS certificate, matching to one of the found compromised
keys. More specifically, we match the fingerprint of public keys in
the Censys database on ones extracted from found private keys.

In Figure 6, we detail how many hosts rely their authenticity
on found compromised private keys and how often these keys
are reused. While the total number of hosts relying on compro-
mised keys is worrying on its own (275,269 hosts in Oct. 2022),
their protocols, even worse, imply sensitive services. As such, in
October 2022, we find 8,674 MQTT and 19 AMQP hosts, potentially
transferring privacy-sensitive ((I)IoT) data. Moreover, 6,672 FTP,
426 PostgreSQL, 3 Elasticsearch, and 3 MySQL instances serve po-
tentially confidential data. Regarding Internet communications,
we see 216 SIP hosts used for telephony as well as 8,165 SMTP,
1,516 POP3, and 1,798 IMAP servers used for email. Since these
hosts are susceptible to impersonation attacks due to their leaked

ASIA CCS 2023, July 10–14, 2023, Melbourne, VIC, Australia Dahlmanns et al.

20
22

05 06 07 08 09 10 11 12 02 03 04 05 06 07 08 09

Misc.
PostgreSQL

MySQL
Elasticsearch

Kubernetes
SIP

LDAP
SSH

IMAP
SMTP
POP3

FTP
HTTP

MQTT
AMQP

Hosts: 1 100 10000

100

200

300

400

500

#
Pr

iv
at

e
K

ey
s

Figure 6: Alarming number of hosts (dot size) relying their
authenticity on several compromised keys (dot color) over
time (x-axis). Used protocols (y-axis) imply sensitive services.

private keys, attackers can eavesdrop, relay, or alter the sensitive
data transmitted here.

Aggravatingly, we also find services with administrative rele-
vance: 240 SSH servers rely on 77 compromised host keys and
24 Kubernetes instances use leaked keys opening doors for attacks
which can lead to remote-shell access, extension of botnets or fur-
ther data access. The comparably low number of compromised keys
used (compared to 11,942 found SSH host keys) is probably due to
a missing need for SSH servers in Docker containers as other mech-
anisms, e.g., docker exec, already allow shell access. Furthermore,
we see 37 LDAP instances relying on leaked secrets. As LDAP is
used as a base for user authentication on attached systems, the
integrity of unknown many other clients is at stake. For instance,
attackers could grant themselves root access to a myriad of systems.

The number of actually used keys is low compared to the number
of hosts which rely on them indicating that a few Docker images
lead to various compromised container deployments. Thus, the
simplicity of Docker to deploy services based on ready-to-use im-
ages puts the authenticity of several instances most likely operated
by different users under threat. In this regard, HTTPS hosts stand
out in particular. 213,573 HTTPS hosts use 515 different compro-
mised private keys showing that the reuse of these keys is rampant
for Web services. Thus, attackers can perform Man-in-the-Middle
attacks to alter webpages on their delivery or data sent to the server.

Figure 6 also underpins that the key usage of compromised keys
is long-lasting and rising, i.e., over the complete available period
the number of compromised systems grew from 243,419 (relying
on 535 compromised keys) to 275,269 hosts (740 keys) indicating
that container images with compromised certificates or SSH host
keys included are increasingly used. Thus, the authenticity of more
and more systems is futile, offering an ever-growing attack surface.

While our study is significantly driven by initially found com-
promised keys in Docker images in the area of the IIoT, Censys does
not identify secured IIoT protocols other than AMQP and MQTT
via TLS. Thus, we perform own Internet-wide measurements for a
deeper inspection of whether IIoT services also use compromised
certificates, e.g., for authentic communication via OPC UA. To this
end, we select ten secure IIoT protocols from recent literature [12]
and mimic its proposed measurement strategy. Our results show

that besides the already large number of compromised AMQP and
MQTT hosts, only 2 CoAP hosts use 2 different leaked keys from
Docker containers. That we do not find substantially more compro-
mised hosts using other IIoT protocols underlines that the issue of
key leakage is not an IIoT specfic hotspot but a general problem.

Takeaway: 275,269 hosts use 740 compromised private keys found
in Docker images for authentication on the Internet and encompass
deployments using, i.a., MQTT, SMTP, and PostgreSQL. This wide-
spread usage allows attackers to eavesdrop on confidential or alter
sensitive information, e.g., from the IoT, webpages, or databases.

7 DISCUSSION, LIMITATIONS & MITIGATIONS
The outcome of our work has different aspects. We have seen that
numerous private keys are compromised by image creators publish-
ing their images via Docker registries and shown that security relies
on these secrets in practice. Still, future work could investigate the
limitations of our approach or implement the derived mitigation
opportunities from our results.

View on Available Images: Due to rate and computation-time
limits and comprehensive ethical considerations (cf. Appendix A),
we could not analyze all available images onDockerHub and private
registries. Thus, we might have missed secrets included in single
layers or complete images that were not subject to our study. In this
light, the absolute number of found secrets is already very alerting.
Also, in relative numbers, our results should be representative for
the selected groups due to our sampling. Yet, the selected groups,
i.e., our Docker Hub search terms, might lead to skewed results
overestimating the overall population. For instance, images that
are not targeted at protocols might have been created with fewer
secrets. Thus, we opted for a broad body of terms based on, i.a.,
public polls [74] to avoid any bias. Moreover, our private registry
analysis has not been targeted but included randomly sampled
layers, and we still found a similar share of affected images as on
Docker Hub. As such, we believe that our relative results are—at
least in their magnitude—representative for the overall population
of Docker images publicly available.

Missing Methods to Check API Secrets: While relying on
Internet-wide measurements was a suitable measure to assess the
usage of compromised private keys for the authenticity of Internet-
reachable services, we could not check whether found API secrets
are functional. The only option would be to contact the correspond-
ing API’s endpoint to check for the acceptance of found credentials.
However, due to our ethical considerations, we must not use found
secrets as such usage might influence other systems or services.
Thus, we cannot validate them against their respective endpoint.
Still, the number of found secrets is worrying and looking at the
usage of compromised private keys, we are convinced that many
API secrets are also functional.

Causes & Mitigation Opportunities:We have seen both cre-
ators actively copying secrets from their local file system into the
image, e.g., most of the API secrets but also private keys, incl. cer-
tificates, and passively generating key material during the image
creation process, e.g., by installing an OpenSSH server. Both be-
haviors lead to compromised secrets and affect the security of both
image creators and users basing their containers on an image and

An Internet-wide Study on Secrets in Container Images ASIA CCS 2023, July 10–14, 2023, Melbourne, VIC, Australia

already included secrets. Most likely, creators and users are un-
aware of compromising or using compromised foreign secrets. In
fact, compared to GitHub, which provides a graphical interface to
browse published files and potentially notice a mistakenly uploaded
secret, files in Docker images and containers cannot be browsed eas-
ily, i.e., users barely get an overview on included files. Furthermore,
while Git repositories only include manually added files, images of
Docker containers contain a complete system directory tree. Thus,
files with included secrets cannot be identified.

The mitigation of these problems must be two-fold. On the one
hand, image creators must be warned that they are uploading their
secrets to (publicly reachable) Docker registries. On the other hand,
when deploying containers based on downloaded images, users
should be informed that included secrets, especially private keys,
might already be compromised, putting the authentication of de-
ployed services at stake. To this end, credential-finding tools such
as TruffleHog [76] or SecretScanner [14] can be integrated on both
sides of the Docker paradigm. When uploading or downloading
an image, these tools could then scan all layers of the image for
included secrets. To reduce the number of false positives, for po-
tential API secrets, the tool can also check the secret’s function
against the respective endpoint (we think this is also ethically cor-
rect on the user’s side who downloaded the image). For private
keys, the tools could maintain a list of test keys that are usually
included in libraries. Increasing the image creator’s awareness re-
garding the leakage of such secrets should decrease their number
in uploaded images. Additionally, performing a second check at the
user deploying a container based on a downloaded image should
further decrease the number of services relying on already com-
promised secrets. An additional help could be an API + graphical
view for images on Docker Hub, which shows the included files.
This API could also enable third-party solutions similar to those
for GitHub [31, 37, 76] to easily search for known secret file paths.

8 CONCLUSION
Containerization allows integrating applications and their depen-
dencies in self-containing and shareable images making software
deployment easy. However, when focusing on security, sharing of
secrets or using already compromised secrets breaks promises, e.g.,
authenticity or access control. Thus, cryptographic secrets must
not be included in publicly available container images.

Our analysis of 337,171 images from Docker Hub and 8,076 pri-
vate registries revealed that, however, 8.5 % include secrets that
should not be leaked to the public. More specifically, we found
a near-lower bound of 52,107 private keys and 3,158 API secrets.
2,920 API secrets belonging to cloud providers, e.g., Amazon AWS
API (1,213 secrets), or 25 secrets to financial services, e.g., Stripe
API (18 secrets), show that attackers can cause immediate damage
knowing these secrets. Focusing on the leaked private keys, we
find that these are also in use in practice: 275,269 TLS and SSH
hosts on the Internet rely their authentication on found keys, thus
being susceptible to impersonation attacks. Notably, many private
keys automatically generate when installing packages during image
creation. While beneficial when running on real hardware where
every computer generates its own key, in container images, this

process automatically leads to compromised secrets and potentially
a sheer number of containers with compromised authenticity.

We further discover that especially private registries serve im-
ages with potentially sensitive software, most likely not intended to
be publicly shared. Additionally, these registries might not prevent
write access enabling attackers to add malware to images.

Our work shows that secret leakage in container images is a real
threat and not neglectable. Especially the proven usage of leaked
private keys in practice verifies numerous introduced attack vectors.
As a countermeasure, the awareness of image creators and users
regarding secret compromise must be increased, e.g., by integrating
credential search tools into the Docker paradigm.

ACKNOWLEDGMENTS
Funded by the German Federal Ministry for Economic Affairs and
Climate Action (BMWK) — Research Project VeN2uS — 03EI6053K.
Funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy — EXC-
2023 Internet of Production — 390621612.

REFERENCES
[1] David Adrian, Karthikeyan Bhargavan, et al. 2015. Imperfect Forward Secrecy:

How Diffie-Hellman Fails in Practice. In ACM CCS.
[2] Marco Balduzzi, Jonas Zaddach, et al. 2012. A security analysis of Amazon’s

Elastic Compute Cloud service. IEEE/IFIP DSN (2012).
[3] Giovanni Barbieri, Mauro Conti, et al. 2021. Assessing the Use of Insecure ICS

Protocols via IXP Network Traffic Analysis. In IEEE ICCCN.
[4] Kelly Brady, Seung Moon, et al. 2020. Docker Container Security in Cloud

Computing. In IEEE CCWC.
[5] Stuart Burns. 2021. How to keep Docker secrets secret. https://www.techtarget.

com/searchitoperations/tip/How-to-keep-Docker-secrets-secret. (Accessed on
06/13/2022).

[6] Joao M. Ceron, Justyna J. Chromik, et al. 2020. Online Discoverability and
Vulnerabilities of ICS/SCADA Devices in the Netherlands. arXiv:2011.02019.

[7] Taejoong Chung, Yabing Liu, et al. 2016. Measuring and Applying Invalid SSL
Certificates: The Silent Majority. In ACM IMC.

[8] Theo Combe, Antony Martin, et al. 2016. To Docker or Not to Docker: A Security
Perspective. IEEE Cloud Comp. 3, 5 (2016).

[9] COMSYS. 2023. Docker Secret Analysis Code. https://github.com/COMSYS/
docker-secret-analysis.

[10] Ang Cui and Salvatore J. Stolfo. 2010. A Quantitative Analysis of the Insecurity
of Embedded Network Devices: Results of a Wide-Area Scan. In ACM ACSAC.

[11] Markus Dahlmanns, Johannes Lohmöller, et al. 2020. Easing the Conscience with
OPC UA: An Internet-Wide Study on Insecure Deployments. In ACM IMC.

[12] Markus Dahlmanns, Johannes Lohmöller, et al. 2022. Missed Opportunities:
Measuring the Untapped TLS Support in the Industrial Internet of Things. In
ACM ASIACCS. New York, NY, USA.

[13] Jean-Laurent de Morlhon. 2020. Scaling Docker’s Business to Serve Millions More
Developers: Storage - Docker. https://www.docker.com/blog/scaling-dockers-
business-to-serve-millions-more-developers-storage/. (Accessed on 08/17/2022).

[14] deepfence. 2022. SecretScanner. https://github.com/deepfence/SecretScanner.
(Accessed on 10/11/2022).

[15] David Dittrich and Erin Kenneally. 2012. The Menlo Report: Ethical Principles
Guiding Information and Communication Technology Research. Technical Report.
U.S. Department of Homeland Security.

[16] Docker Inc. 2022. Docker Documentation: Best practices for writing Dock-
erfiles. https://docs.docker.com/develop/develop-images/dockerfile{_}best-
practices/. (Accessed on 11/11/2022).

[17] Docker Inc. 2022. Docker Documentation: Deploy a registry server. https:
//docs.docker.com/registry/deploying/. (Accessed on 11/30/2022).

[18] Docker Inc. 2022. Docker Documentation: Dockerfile reference. https://docs.
docker.com/engine/reference/builder/. (Accessed on 08/11/2022).

[19] Docker Inc. 2022. Docker Documentation: HTTP API. https://docs.docker.com/
registry/spec/api/. (Accessed on 08/09/2022).

[20] Docker Inc. 2022. Docker Documentation: Image Manifest. https://docs.docker.
com/registry/spec/manifest-v2-2/. (Accessed on 08/09/2022).

[21] Docker Inc. 2022. Docker Hub Container Image Library. https://hub.docker.com/.
(Accessed on 06/07/2022).

[22] Docker Inc. 2022. Increase Rate Limits - Docker. https://www.docker.com/
increase-rate-limits/. (Accessed on 08/17/2022).

https://www.techtarget.com/searchitoperations/tip/How-to-keep-Docker-secrets-secret
https://www.techtarget.com/searchitoperations/tip/How-to-keep-Docker-secrets-secret
https://github.com/COMSYS/docker-secret-analysis
https://github.com/COMSYS/docker-secret-analysis
https://www.docker.com/blog/scaling-dockers-business-to-serve-millions-more-developers-storage/
https://www.docker.com/blog/scaling-dockers-business-to-serve-millions-more-developers-storage/
https://github.com/deepfence/SecretScanner
https://docs.docker.com/develop/develop-images/dockerfile{_}best-practices/
https://docs.docker.com/develop/develop-images/dockerfile{_}best-practices/
https://docs.docker.com/registry/deploying/
https://docs.docker.com/registry/deploying/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/registry/spec/api/
https://docs.docker.com/registry/spec/api/
https://docs.docker.com/registry/spec/manifest-v2-2/
https://docs.docker.com/registry/spec/manifest-v2-2/
https://hub.docker.com/
https://www.docker.com/increase-rate-limits/
https://www.docker.com/increase-rate-limits/

ASIA CCS 2023, July 10–14, 2023, Melbourne, VIC, Australia Dahlmanns et al.

[23] Docker Inc. 2022. Manage sensitive data with Docker secrets. https://docs.docker.
com/engine/swarm/secrets/. (Accessed on 06/15/2022).

[24] Docker Inc. 2022. What is a Container? - Docker. https://www.docker.com/
resources/what-container/. (Accessed on 08/09/2022).

[25] Zakir Durumeric, David Adrian, et al. 2015. A Search Engine Backed by Internet-
Wide Scanning. In ACM CCS.

[26] Zakir Durumeric, Eric Wustrow, et al. 2013. ZMap: Fast Internet-wide Scanning
and Its Security Applications. In USENIX SEC.

[27] Carlo Farinella, Ali Ahmed, et al. 2021. Git Leaks: Boosting Detection Effective-
ness Through Endpoint Visibility. In IEEE TrustCom.

[28] Runhan Feng, Ziyang Yan, et al. 2022. Automated Detection of Password Leakage
from Public GitHub Repositories. In ACM ICSE. New York, NY, USA.

[29] Oliver Gasser, Ralph Holz, et al. 2014. A deeper understanding of SSH: Results
from Internet-wide scans. In IEEE NOMS.

[30] Béla Genge and Călin Enăchescu. 2016. ShoVAT: Shodan-Based Vulnerability
Assessment Tool for Internet-Facing Services. Sec. and Commun. Netw. 9, 15
(2016).

[31] GitGuardian. 2022. Git Security Scanning & Secrets Detection. https://www.
gitguardian.com/. (Accessed on 06/17/2022).

[32] Leonid Glanz, Patrick Müller, et al. 2020. Hidden in Plain Sight: Obfuscated
Strings Threatening Your Privacy. In ACM ASIACCS. New York, NY, USA.

[33] Dan Goodin. 2013. PSA: Don’t upload your important passwords to
GitHub. https://arstechnica.com/information-technology/2013/01/psa-dont-
upload-your-important-passwords-to-github/. (Accessed on 06/13/2022).

[34] DanGoodin. 2018. Thousands of servers found leaking 750MBworth of passwords
and keys. https://arstechnica.com/information-technology/2018/03/thousands-
of-servers-found-leaking-750-mb-worth-of-passwords-and-keys/. (Accessed
on 06/13/2022).

[35] Adam Hansson, Mohammad Khodari, et al. 2018. Analyzing Internet-connected
industrial equipment. In IEEE ICSigSys.

[36] Nadia Heninger, Zakir Durumeric, et al. 2012. Mining Your Ps and Qs: Detection
of Widespread Weak Keys in Network Devices. In USENIX SEC.

[37] Michael Henriksen. 2022. Reconnaissance tool for GitHub organizations. https:
//github.com/michenriksen/gitrob. (Accessed on 06/17/2022).

[38] Jens Hiller, Johanna Amann, et al. 2020. The Boon and Bane of Cross-Signing:
Shedding Light on a Common Practice in Public Key Infrastructures. In ACM
CCS.

[39] Ralph Holz, Johanna Amann, et al. 2016. TLS in the Wild: An Internet-wide
Analysis of TLS-based Protocols for Electronic Communication. NDSS (2016).

[40] Ralph Holz, Lothar Braun, et al. 2011. The SSL Landscape: A Thorough Analysis
of the x.509 PKI Using Active and Passive Measurements. In ACM IMC.

[41] Ralph Holz, Jens Hiller, et al. 2020. Tracking the Deployment of TLS 1.3 on the
Web: A Story of Experimentation and Centralization. ACM SIGCOMM Comput.
Commun. Rev. 50, 3 (2020).

[42] Delu Huang, Handong Cui, et al. 2019. Security Analysis and Threats Detection
Techniques on Docker Container. In IEEE ICCC.

[43] Henri Hubert. 2021. Secrets exposed in Docker images: Hunting for secrets in
Docker Hub. https://blog.gitguardian.com/hunting-for-secrets-in-docker-hub/.
(Accessed on 06/13/2022).

[44] Vipin Jain, Baldev Singh, et al. 2021. Static Vulnerability Analysis of Docker
Images. IOP: Mat. Sc. and Eng. 1131, 1 (apr 2021).

[45] Sabrina Kall and Slim Trabelsi. 2021. An Asynchronous Federated Learning
Approach for a Security Source Code Scanner. In ICISSP, Paolo Mori, Gabriele
Lenzini, and Steven Furnell (Eds.).

[46] Timo Kiravuo, Seppo Tiilikainen, et al. 2015. Peeking Under the Skirts of a Nation:
Finding ICS Vulnerabilities in the Critical Digital Infrastructure. In ECCWS.

[47] Alexander Krause, Jan H. Klemmer, et al. 2022. Poster: Committed by Accident —-
Prevention and Remediation Strategies Against Secret Leakage. https://www.ieee-
security.org/TC/SP2022/program-posters.html.

[48] Deepak Kumar, Zhengping Wang, et al. 2018. Tracking Certificate Misissuance
in the Wild. In IEEE SP.

[49] Mohit Kumar. 2013. Hundreds of SSH Private Keys exposed via GitHub
Search. https://thehackernews.com/2013/01/hundreds-of-ssh-private-keys-
exposed.html. (Accessed on 06/13/2022).

[50] Detectify Labs. 2016. Slack bot token leakage exposing business critical informa-
tion. https://labs.detectify.com/2016/04/28/slack-bot-token-leakage-exposing-
business-critical-information/. (Accessed on 06/15/2022).

[51] Hyunwoo Lee, Doowon Kim, et al. 2021. TLS 1.3 in Practice: How TLS 1.3
Contributes to the Internet. In ACM WWW. New York, NY, USA.

[52] Joonhee Lee, Hyunwoo Lee, et al. 2021. Analyzing Spatial Differences in the TLS
Security of Delegated Web Services. In ACM ASIACCS. New York, NY, USA.

[53] Éireann P. Leverett. 2011. Quantitatively Assessing and Visualising Industrial
System Attack Surfaces. Master’s thesis. University of Cambridge.

[54] Guannan Liu, Xing Gao, et al. 2022. Exploring the Unchartered Space of Container
Registry Typosquatting. In USENIX SEC.

[55] Peiyu Liu, Shouling Ji, et al. 2020. Understanding the Security Risks of Docker
Hub. In ESORICS, Liqun Chen, Ninghui Li, Kaitai Liang, and Steve Schneider

(Eds.). Cham.
[56] S. Lounici, M. Rosa, et al. 2021. Optimizing Leak Detection in Open-Source

Platforms with Machine Learning Techniques. In ICISSP.
[57] Federico Maggi, Rainer Vosseler, et al. 2018. The Fragility of Industrial IoT’s Data

Backbone: Security and Privacy Issues in MQTT and CoAP Protocols. Technical
Report. Trend Micro Inc.

[58] Michael Meli, Matthew R. McNiece, et al. 2019. How Bad Can It Git? Character-
izing Secret Leakage in Public GitHub Repositories. NDSS (2019).

[59] Ariana Mirian, Zane Ma, et al. 2016. An Internet-wide view of ICS devices. In
IEEE PST.

[60] Marcin Nawrocki, Thomas C. Schmidt, et al. 2020. Uncovering Vulnerable Indus-
trial Control Systems from the Internet Core. In IEEE/IFIP NOMS.

[61] Claus Pahl. 2015. Containerization and the PaaS Cloud. IEEE Cloud Comp. 2, 3
(2015).

[62] Akond Rahman, Chris Parnin, et al. 2019. The Seven Sins: Security Smells in
Infrastructure as Code Scripts. In ICSE.

[63] Akond Rahman, Md Rayhanur Rahman, et al. 2021. Security Smells in Ansible
and Chef Scripts: A Replication Study. ACM Trans. Softw. Eng. Methodol. 30, 1
(jan 2021).

[64] Akond Rahman and Laurie Williams. 2021. Different Kind of Smells: Security
Smells in Infrastructure as Code Scripts. IEEE S&P 19, 3 (2021).

[65] Md Rayhanur Rahman, Akond Rahman, et al. 2019. Share, But be Aware: Security
Smells in Python Gists. In IEEE ICSME.

[66] RedHunt Labs. 2021. Scanning Millions Of Publicly Exposed Docker Containers —
Thousands Of Secrets Leaked (Wave 5). https://redhuntlabs.com/blog/scanning-
millions-of-publicly-exposed-docker-containers-thousands-of-secrets-
leaked.html. (Accessed on 06/13/2022).

[67] Aakanksha Saha, Tamara Denning, et al. 2020. Secrets in Source Code: Reducing
False Positives using Machine Learning. In IEEE COMSNETS.

[68] Luca Schumann, Trinh Viet Doan, et al. 2022. Impact of Evolving Protocols and
COVID-19 on Internet Traffic Shares. https://arxiv.org/abs/2201.00142.

[69] SecurityFail. 2022. kompromat. https://github.com/SecurityFail/kompromat.
(Accessed on 11/09/2022).

[70] Matías Sequeira. 2020. Low-hanging Secrets in Docker Hub and a Tool to
Catch Them All. https://ioactive.com/guest-blog-docker-hub-scanner-matias-
sequeira/. (Accessed on 06/13/2022).

[71] Shodan. 2013. Shodan. https://www.shodan.io.
[72] Vibha Sinha, Diptikalyan Saha, et al. 2015. Detecting and Mitigating Secret-Key

Leaks in Source Code Repositories. In IEEE/ACM MSR.
[73] Drew Springall, Zakir Durumeric, et al. 2016. Measuring the Security Harm of

TLS Crypto Shortcuts. In ACM IMC.
[74] Stack Overflow. 2022. Developer Survey 2021. https://insights.stackoverflow.

com/survey/2021. (Accessed on 07/11/2022).
[75] The Linux Foundation. 2022. Kubernetes - Production-Grade Container Orches-

tration. https://kubernetes.io/. (Accessed on 11/12/2022).
[76] TruffleSecurity. 2022. TruffleHog. https://github.com/trufflesecurity/trufflehog.

(Accessed on 06/17/2022).
[77] Itamar Turner-Trauring. 21. Don’t leak your Docker image’s build secrets. https:

//pythonspeed.com/articles/docker-build-secrets/. (Accessed on 06/13/2022).
[78] Takahiro Ueda, Takayuki Sasaki, et al. 2022. An Internet-Wide View of Connected

Cars: Discovery of Exposed Automotive Devices. In ACM ARES. New York, NY,
USA.

[79] Abhishek Verma, Luis Pedrosa, et al. 2015. Large-Scale Cluster Management at
Google with Borg. In ACM EuroSys. New York, NY, USA.

[80] Jinpeng Wei, Xiaolan Zhang, et al. 2009. Managing Security of Virtual Machine
Images in a Cloud Environment. In ACM CCSW.

[81] Jonathan CodiWest and Tyler Moore. 2022. Longitudinal Study of Internet-Facing
OpenSSH Update Patterns. In PAM, Oliver Hohlfeld, Giovane Moura, and Cristel
Pelsser (Eds.). Cham.

[82] Jordan Writght. 2014. Why Deleting Sensitive Information from Github Doesn’t
Save You. https://jordan-wright.com/blog/2014/12/30/why-deleting-sensitive-
information-from-github-doesnt-save-you/. (Accessed on 06/13/2022).

[83] Wei Xu, Yaodong Tao, et al. 2018. The Landscape of Industrial Control Systems
(ICS) Devices on the Internet. In IEEE Cyber SA.

[84] Ahmed Zerouali, Tom Mens, et al. 2019. On the Relation between Outdated
Docker Containers, Severity Vulnerabilities, and Bugs. In IEEE SANER.

[85] Ahmed Zerouali, Tom Mens, et al. 2021. On the usage of JavaScript, Python and
Ruby packages in Docker Hub images. Sc. of Comp. Prog. 207 (2021).

[86] Nannan Zhao, Vasily Tarasov, et al. 2019. Large-Scale Analysis of the Docker
Hub Dataset. In IEEE CLUSTER.

[87] Nannan Zhao, Vasily Tarasov, et al. 2019. Slimmer: Weight Loss Secrets for
Docker Registries. In IEEE CLOUD.

[88] Zeljka Zorz. 2014. 10,000 GitHub users inadvertently reveal their AWS secret
access keys. https://www.helpnetsecurity.com/2014/03/24/10000-github-users-
inadvertently-reveal-their-aws-secret-access-keys/. (Accessed on 06/13/2022).

https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/secrets/
https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://www.gitguardian.com/
https://www.gitguardian.com/
https://arstechnica.com/information-technology/2013/01/psa-dont-upload-your-important-passwords-to-github/
https://arstechnica.com/information-technology/2013/01/psa-dont-upload-your-important-passwords-to-github/
https://arstechnica.com/information-technology/2018/03/thousands-of-servers-found-leaking-750-mb-worth-of-passwords-and-keys/
https://arstechnica.com/information-technology/2018/03/thousands-of-servers-found-leaking-750-mb-worth-of-passwords-and-keys/
https://github.com/michenriksen/gitrob
https://github.com/michenriksen/gitrob
https://blog.gitguardian.com/hunting-for-secrets-in-docker-hub/
https://www.ieee-security.org/TC/SP2022/program-posters.html
https://www.ieee-security.org/TC/SP2022/program-posters.html
https://thehackernews.com/2013/01/hundreds-of-ssh-private-keys-exposed.html
https://thehackernews.com/2013/01/hundreds-of-ssh-private-keys-exposed.html
https://labs.detectify.com/2016/04/28/slack-bot-token-leakage-exposing-business-critical-information/
https://labs.detectify.com/2016/04/28/slack-bot-token-leakage-exposing-business-critical-information/
https://redhuntlabs.com/blog/scanning-millions-of-publicly-exposed-docker-containers-thousands-of-secrets-leaked.html
https://redhuntlabs.com/blog/scanning-millions-of-publicly-exposed-docker-containers-thousands-of-secrets-leaked.html
https://redhuntlabs.com/blog/scanning-millions-of-publicly-exposed-docker-containers-thousands-of-secrets-leaked.html
https://arxiv.org/abs/2201.00142
https://github.com/SecurityFail/kompromat
https://ioactive.com/guest-blog-docker-hub-scanner-matias-sequeira/
https://ioactive.com/guest-blog-docker-hub-scanner-matias-sequeira/
https://www.shodan.io
https://insights.stackoverflow.com/survey/2021
https://insights.stackoverflow.com/survey/2021
https://kubernetes.io/
https://github.com/trufflesecurity/trufflehog
https://pythonspeed.com/articles/docker-build-secrets/
https://pythonspeed.com/articles/docker-build-secrets/
https://jordan-wright.com/blog/2014/12/30/why-deleting-sensitive-information-from-github-doesnt-save-you/
https://jordan-wright.com/blog/2014/12/30/why-deleting-sensitive-information-from-github-doesnt-save-you/
https://www.helpnetsecurity.com/2014/03/24/10000-github-users-inadvertently-reveal-their-aws-secret-access-keys/
https://www.helpnetsecurity.com/2014/03/24/10000-github-users-inadvertently-reveal-their-aws-secret-access-keys/

An Internet-wide Study on Secrets in Container Images ASIA CCS 2023, July 10–14, 2023, Melbourne, VIC, Australia

A ETHICAL CONSIDERATIONS
Our research curates a comprehensive archive of leaked security
secrets in Docker images on Docker Hub and private registries
whose leakage is again a threat to security. Moreover, to find pri-
vate registries and deployments relying their security on leaked
secrets, we leverage Internet-wide measurements that can have
unintended implications, e.g., high load on single network connec-
tions impacting stability or alerting sysadmins due to unknown
traffic. Thus, we base our research on several ethical considerations.

First, we take well-established guidelines [15] and best practices
of our institution as base for our research. We handle all collected
data with care and inform image creators and Docker Inc., to respon-
sibly disclose our findings (cf. Appendix A.1). Moreover, we comply
with recognized measurement guidelines [26] for our Internet-wide
measurements reducing their impact (cf. Appendix A.2).

A.1 Handling of Data & Responsibilities
During our research, we always only collect and request publicly
available data, i.e., our access is limited to publicly available image
repositories. At no time do we bypass access control, e.g., by guess-
ing passwords. We, thus, cannot download private images. Still, we
revealed that many of the public images contain sensitive security
secrets (cf. Section 5.1) which we stored for further analysis. All
found secrets are stored on secured systems. Furthermore, we re-
frain from releasing our dataset including these secrets or image
names, to not provide an archive of leaked secrets or pinpoints
for potential attackers. While this restriction prevents others from
independently reproducing our results, we consider this decision
to constitute a reasonable trade-off to protect affected users.

Responsible Disclosure: To further support affected users in
removing their secrets from publicly available Docker images, we
target to responsibly disclose our findings. To this end, we extract
e-mail addresses from maintainer variables set in Dockerfiles and
furthermore derive addresses from Gravatar accounts linked to
affected Docker Hub accounts. In this regard, we identified 1,181 e-
mail addresses we contacted to notify about our possible findings.
Already after a few hours, we received >30 answers of owners
appreciating our efforts, fixing their images or informing us that the
image at hand is not used anymore. A handful informed us that no
secrets were leaked helping us to refine our filtering. Moreover, we
decided to reach out to the operator of Docker Hub, i.e., Docker Inc.,
to discuss potential further disclosure to unidentifiable creators.

A.2 Reducing Impact of Measurements
To reduce the impact of our active Internet scans, we follow widely
accepted Internet measurement guidelines [26].

Coordination: We coordinate our measurements with our Net-
work Operation Center to reduce the impact on the Internet and to
react correspondingly. Abuse emails are handled informing about
the intent of our measurements and how to opt-out of our measure-
ments. As part of this opt-out process, we maintain a blocklist to
exclude IPs from our measurements.

External Information: For giving external operators informa-
tion about our research intent, we provide rDNS records for all our
scan IPs and transmit contact information in the HTTP header of
each request to the registries. Moreover, we host a webpage on our

scan IPs, which gives further information on our project and how
to opt-out. Over time, also due to other measurements, we excluded
5.8M IP addresses (0.14% of the IPv4 address space).

Limiting Load: To limit load and stress on all systems involved
(along the path and the end-host), we deliberately reduce our scan-
rate. Our scans are stretched over the course of one day and use
zmap’s address randomization to spread load evenly. We further
limit the load on single private registries when downloading avail-
able images. While we paid to increase the existing rate limiting
for image downloads on Docker Hub (cf. Appendix B), private
registries typically do not implement any rate limiting. Hence,
to prevent our scanner from overloading registries running on
resource-constrained hardware or connected via slow or volume-
billed Internet connections, we decide to only download image
layers randomly until their size sums up to at most 250MB. Addi-
tionally, we shuffle the downloads of layers of different registries
to further distribute the load.

A.3 Overall Considerations
Without taking our goals into account, summarizing the sensitive
nature and the impact of our measurements can quickly lead to
the conclusion that our measurements are not beneficial. However,
we consider it public interest and fundamental for improving secu-
rity to know about potential security issues and how widespread
these are. The Docker paradigm does not include any mechanisms
to prevent image creators from (accidentally) adding security se-
crets to their images and no mechanisms exist that warns users
relying on already compromised security secrets. Hence, we con-
sider it essential to know whether secrets are widely included in
publicly available Docker images and whether these are in use at
scale to steer future decisions for counter-measures. To answer this
question, we carefully weighed the impact of our measurements
against their benefit and have taken sensible measures to reduce
the risks of building a large archive of leaked security secrets and
risks introduced by active Internet measurements.

B IMAGE DOWNLOAD FROM DOCKER HUB
The limit of image manifest downloads from Docker Hub depends
on the booked plan, e.g., free users are allowed to pull only 800 im-
ages per day. Hence, for a faster analysis of images on Docker Hub,
we purchased two Pro accounts, that allow 5,000 image downloads
per day each. Still, we are required to perform our analysis on a
subpart of available images as the download of one image of every
of the 9,321,726 available repositories would require 933 days un-
der best conditions. Thus, we decided to limit our analysis on two
categories: (i) a context of standard protocol and frequently used
technologies, and (ii) an (Industrial) IoT context for comparison.
Both categories have communication in common as here security
can be affected on an Internet scale.

Standard Context: To generate a wide view on secret leakage
in Docker images, we create a list of search queries comprising stan-
dard protocols [68], and frequently used technologies [74]. To find
related images, we employ Docker Hub’s API to perform searches
over all available images and retrieve results users would retrieve
when using the docker searchCLI command or Docker Hub’s web
interface. To ensure that different handling of special characters in

ASIA CCS 2023, July 10–14, 2023, Melbourne, VIC, Australia Dahlmanns et al.

Table 4: Search queries and derived spellings to receive corresponding Docker repositories from Docker Hub of our Standard
and (Industrial) IoT query group.

Standard: Trending protocols and technologies.
· tls · ipp · css · imap · html · mysql · oracle · mariadb · memcached · elasticsearch
· ssh · vpn · sql · pptp · java · mssql · heroku · ansible · terraform · c++→ c+, c, c
· dns · irc · php · xmpp · bash · redis · docker · xamarin · postgresql · ibm db2→ ibmdb2, ibm+db2
· ftp · aws · quic · yarn · ipmi · shell · puppet · firebase · kubernetes · unity 3d→ unity+3d, unity3d
· rdp · gcp · http · deno · samba · proxy · pulumi · dynamodb · javascript · ibm cloud→ ibmcloud, ibm+cloud
· vnc · git · smtp · chef · rsync · telnet · python · cassandra · typescript · node.js→ node js, node+js, nodejs
· smb · k8s · pop3 · flow · ipsec · sqlite · mongodb · couchbase · powershell · ibm watson→ ibm+watson, ibmwatson
· ipp · css · imap · html · mysql

(Industrial) IoT: Industrial protocols subject to recent research.
· atg · mqtt · codesys · ff-hse→ ff hse, ff+hse, ffhse · iec-61850→ iec+61850, iec61850, iec 61850
· dnp3 · cspv4 · proconos · fl-net→ fl net, flnet, fl+net · zigbee-ip→ zigbeeip, zigbee ip, zigbee+ip
· srtp · bacnet · ethercat · hart-ip→ hart+ip, hartip, hart ip · ansi c12.22→ ansi c12 22, ansi+c12+22, ansic1222
· iccp · modbus · profinet · iec-104→ iec 104, iec104, iec+104 · ethernet/ip→ ethernet+ip, ethernetip, ethernet ip
· amqp · siemens · pc worx→ pcworx, pc+worx · omron fins→ omron+fins, omronfins · red lion crimson v3→ redlioncrimsonv3, red+lion+crimson+v3
· coap · tridium · opc-ua→ opcua, opc+ua, opc ua · melsec-q→ melsecq, melsec q, melsec+q · automatic tank gauge→ automatic+tank+gauge, automatictankgauge

technology and protocol names does not exclude any images, we
include different spelling variants in our query list, i.e., we include
terms as they are, but also replace non-alpha-numeric characters
by + and space. Table 4 (top) shows our constructed search queries
for the standard context.

(Industrial) IoT Context:We extend our analysis on images
in the (Industrial) IoT context, as deployments in this area showed
massive security deficits in past [11, 12, 35, 53, 59, 60], in single
cases traced back to security secret leakage via GitHub and Docker
images [12]. As search terms, we take (Industrial) IoT protocol
names that were subject to recent research [12]. We proceed similar
as in the standard context, i.e., include derived spellings of these
terms, and show our constructed search query of this context in
Table 4 (bottom).

C REGULAR EXPRESSIONS
Following already established procedures to find security secrets in
code repositories [58, 76], we build our secret detection in Docker
Images on regular expressions, i.e., we try to match regular expres-
sions derived from secrets on the content of included files. Table 5
shows our composed list of regular expressions covering a variety
of secrets, i.e., asymmetric private keys and API keys, as well as
accompanying material we use for our analysis, i.e., public keys and
certificates. We orientate our expressions towards related work [58]
and TruffleHog [76], an established tool to find secrets in various
sources, i.e., the local file system, Git repositories, S3 storages, and
syslogs. Specifically, we inherit Meli et al.’s [58] regular expressions
to allow comparisons between the occurrence of leaked secrets in
GitHub repositories at scale and our findings. Furthermore, they
composed their expressions comprehensibly, i.e., they included
API keys for certain services by the occurrence of service domains
in Alexa’s Top 50 Global and United States lists in combination
with a list of well-known APIs manually filtered for services with a
high risk on key leakage and keys with a distinctive signature (to
reduce the number of false-positives). For private keys they focus
on the most prevalent types and form to store, i.e., RSA, elliptic
curve keys, PGP, and general keys in PEM format.

To spread our analysis and align our expressions to the scope of
our search queries (cf. Appendix B), we adapt our expression for
private keys to match every type of private key in PEM format and,
furthermore, extend the list of expressions to also match private key

blocks, keys in PKCS7 format, and keys stored in XML format (due
to their unambiguous signature). Regarding API secrets to match,
we extend our list with expressions from TruffleHog [76] on basis of
services being currently trending under developers [74] or having a
high risk for misuse and the regular expressions including a unique
signature (also to reduce the number of false positives). For some
services we found more than one type of secret, i.e., secrets for
different API versions (GitHub v1 and v2), or different types of
keys (Stripe). Our final list contains 48 expressions which we match
on the content of every file in the images part of our study.

D FILTERING BASED ON FILEPATHS
After matching our regular expressions on arbitrary file content
available in Docker images, extensive filtering is required to ex-
clude false positive matches, i.e., matches that do not contain any
secret. Our File filter bases on file paths derived from matches our
Kompromat filter excluded, i.e., all parent directories under which
we find more than 2/3 test keys known by kompromat [69] and all
directories that include known test keys directly. Additionally, it
takes manually compiled file paths, e.g., where standard libraries re-
side (/var/lib/*) or package managers store their downloads (e.g.,
/.cache/pip/) and extensions of database files (e.g., db and dbf)
into account which we selected after manually revisit all matches
as these produced a high number of false positives.

/

100.0%

Other

58.5%

go
4.6%
root

13.5%

usr

19.5%

work
3.9%

Other

77.1%
pkg

3.4%
.cache
3.4%

local

9.9%

src
3.8%

openvpnbuild
2.5%

Other

83.5%
mod
3.4%
pip

2.6%
lib

3.3%
share
1.2%
src

2.4%
app

1.4%
windowsnsis

2.2%

(a) Private Key

/

100.0%

Other

20.0%

app
5.1%
opt

8.3%
root

8.5%
usr

12.0%

var

46.1%

Other

37.4%

gitlab
3.7%
.cache
5.4%
local

7.9%

cache

17.9%
opt

23.4%

Other

46.1%

embedded
3.5%
pip

3.1%
lib

3.3%

dnf
2.8%
yum

14.4%

mssql

22.5%

(b) API Secrets

Figure 7: Most frequent file paths suspect to our filtering
based on file path or extension.

An Internet-wide Study on Secrets in Container Images ASIA CCS 2023, July 10–14, 2023, Melbourne, VIC, Australia

Table 5: Regular expressions we matched on each file’s content in the layers and environment variables of selected images.

Domain Name Subordinate Expression Source

Private Key

PEM Private Key
(?i)—–\s*?BEGIN[A-Z0-9_-]*?PRIVATE KEY\s*?—–[a-zA-Z0-9\/\n\r=+]*
—–\s*?END[A-Z0-9_-]*? PRIVATE KEY\s*?—–

ownPEM Private Key Block
(?i)—–\s*?BEGIN[A-Z0-9_-]*?PRIVATE KEY BLOCK\s*?—–[a-zA-Z0-9\/\n\r=+]*
—–\s*?END[A-Z0-9_-]*? PRIVATE KEY BLOCK\s*?—–

PEM PKCS7 (?i)—–\s*?BEGIN PKCS7\s*?—–[a-zA-Z0-9\/\n\r=+]*—–\s*?END PKCS7\s*?—–
XML Private Key (?i)<(RSAKeyValue|DSAKeyValue|ECKeyValue)>(.|[\n\r])+<\/RSAKeyValue|\/DSAKeyValue|\/ECKeyValue)>

A
PI

Cloud

Alibaba \b(LTAI[a-zA-Z0-9]{17,21})[\"’;\s]* [76]
Amazon AWS \b((?:AKIA|ABIA|ACCA|ASIA)[0-9A-Z]{16})\b [76]

Azure (?i)(client_secret|clientsecret).{0,20}([a-z0-9_\.\-~]{34}) [76]
DigitalOcean (?i)(?:digitalocean)(?:.|[\n\r]){0,40}\b([A-Za-z0-9_-]{64})\b [76]

Github \b((?:ghp|gho|ghu|ghs|ghr)_[a-zA-Z0-9]{36,255})\b [76]

Gitlab
v1 (?i)(?:gitlab)(?:.|[\n\r]){0,40}\b([a-zA-Z0-9\-=_]{20,22})\b

[76]
v2 \b(glpat-[a-zA-Z0-9\-=_]{20,22})\b

Google Cloud \{[^{]+auth_provider_x509_cert_url[^}]+\} [58]
Google Services \bAIza[0-9A-Za-z\-_]{35}\b [58]

Heroku (?i)(?:heroku)(?:.|[\n\r]){0,40}\b([0-9Aa-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12})\b [76]
IBM Cloud Identity Services (?i)(?:ibm)(?:.|[\n\r]){0,40}\b([A-Za-z0-9_-]{44})\b [76]

Login Radius (?i)(?:loginradius)(?:.|[\n\r]){0,40}\b([0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12})\b [76]
MailChimp \b[0-9a-f]{32}-us[0-9]{1,2}\b [58]
MailGun \bkey-[0-9a-zA-Z]{32}\b [58]

Microsoft Teams

(https:\/\/[a-zA-Z-0-9]+\.webhook\.office\.com\/webhookb2\/[a-zA-Z-0-9]{8}-[a-zA-Z-0-9]{4}-
[a-zA-Z-0-9]{4}-[a-zA-Z-0-9]{4}-[a-zA-Z-0-9]{12}\@[a-zA-Z-0-9]{8}-[a-zA-Z-0-9]{4}-[a-zA-Z-0-9]{4}-
[a-zA-Z-0-9]{4}-[a-zA-Z-0-9]{12}\/IncomingWebhook\/[a-zA-Z-0-9]{32}\/[a-zA-Z-0-9]{8}-[a-zA-Z-0-9]{4}-
[a-zA-Z-0-9]{4}-[a-zA-Z-0-9]{4}-[a-zA-Z-0-9]{12})

[76]

Netlify (?i)(?:netlify)(?:.|[\n\r]){0,40}\b([A-Za-z0-9_-]{43,45})\b [76]
Twilio \bSK[0-9a-fA-F]{32}\b [58]

Financial

Amazon MWS \bamzn\.mws\.[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}\b [58]
Bitfinex (?i)(?:bitfinex)(?:.|[\n\r]){0,40}\b([A-Za-z0-9_-]{43})\b [76]
Coinbase (?i)(?:coinbase)(?:.|[\n\r]){0,40}\b([a-zA-Z-0-9]{64})\b [76]

Currency Cloud (?i)(?:currencycloud)(?:.|[\n\r]){0,40}\b([a-zA-Z0-9\-=_]{20,22})\b [76]
Paydirt (?i)(?:paydirtapp)(?:.|[\n\r]){0,40}\b([a-z0-9]{32})\b [76]
Paymo (?i)(?:paymoapp)(?:.|[\n\r]){0,40}\b([a-zA-Z0-9]{44})\b [76]

Paymongo (?i)(?:paymongo)(?:.|[\n\r]){0,40}\b([a-zA-Z0-9_]{32})\b [76]
PayPal Braintree \baccess_token\$production\$[0-9a-z]{16}\$[0-9a-f]{32}\b [58]

Picatic \bsk_live_[0-9a-z]{32}\b [58]

Stripe
ST \bsk_live_[0-9a-zA-Z]{24}\b

[58]
RE \brk_live_[0-9a-zA-Z]{24}\b

Square
AT \bsq0atp-[0-9A-Za-z\-_]{22}\b

[58]
OA \bsq0csp-[0-9A-Za-z\-_]{43}\b

Ticketmaster (?i)(?:ticketmaster)(?:.|[\n\r]){0,40}\b([a-zA-Z0-9]{32})\b [76]
WePay (?i)(?:wepay)(?:.|[\n\r]){0,40}\b([a-zA-Z0-9_?]{62})\b [76]

Social Media
Facebook

Key \b([A-Za-z0-9_\.]{69}-[A-Za-z0-9_\.]{10})\b [76]
Key \bEAACEdEose0cBA[0-9A-Za-z]+\b [58]

Twitter \b[1-9][0-9]+-[0-9a-zA-Z]{40}\b [58]

IoT

Accuweather (?i)(?:accuweather)(?:.|[\n\r]){0,40}([a-z0-9A-Z\%]{35})\b [76]
Adafruit IO \b(aio_[a-zA-Z0-9]{28})\b [76]
OpenUV (?i)(?:openuv)(?:.|[\n\r]){0,40}\b([0-9a-z]{32})\b [76]
Tomtom (?i)(?:tomtom)(?:.|[\n\r]){0,40}\b([0-9Aa-zA-Z]{32})\b [76]

Accompanying
Material

PEM Certificate (?i)—–\s*?BEGIN CERTIFICATE\s*?—–[a-zA-Z0-9\/\n\r=+]*—–\s*?END CERTIFICATE\s*?—–

own

PEM Certificate Request
(?i)—–\s*?BEGIN CERTIFICATE REQUEST\s*?—–[a-zA-Z0-9\/\n\r=+]*
—–\s*?END CERTIFICATE REQUEST\s*?—–

PEM Public Key
(?i)—–\s*?BEGIN[A-Z0-9_-]*?PUBLIC KEY\s*?—–[a-zA-Z0-9\/\n\r=+]*
—–\s*?END[A-Z0-9_-]*? PUBLIC KEY\s*?—–

PEM Public Key Block
(?i)—–\s*?BEGIN[A-Z0-9_-]*?PUBLIC KEY BLOCK\s*?—–[a-zA-Z0-9\/\n\r=+]*
—–\s*?END[A-Z0-9_-]*? PUBLIC KEY BLOCK\s*?—–

SSH Host Key \bssh-[0-9a-zA-Z]+ AAAA\S+ \S+\b

Figure 7 shows the seven most prevalent file paths that contain
matches excluded by our File filter. Indeed, most of the exclusions
are matches included in folders belonging to package managers

and thus most likely test secrets. The massive filtering of API secret
matches in /var/opt/mssql is due to the high number of false
positives of the Twitter regular expressions on database files.

	Abstract
	1 Introduction
	2 A Primer on the Docker Paradigm
	3 Related Work
	4 Composing our Dataset
	4.1 Retrieving Images from Docker Hub
	4.2 Images from Private Docker Registries

	5 Leaked Secrets in Docker Images
	5.1 Searching for Secrets
	5.2 Origin of Leaked Secrets
	5.3 Compromised Certificates

	6 Secret Usage in the Wild
	7 Discussion, Limitations & Mitigations
	8 Conclusion
	Acknowledgments
	References
	A Ethical Considerations
	A.1 Handling of Data & Responsibilities
	A.2 Reducing Impact of Measurements
	A.3 Overall Considerations

	B Image Download from Docker Hub
	C Regular Expressions
	D Filtering Based on Filepaths

